V0503HMA22H / README.md
L0I6T1Z9Y
upload V0503HMA22H
d8da5f5
|
raw
history blame
3.05 kB
metadata
license: mit
base_model: microsoft/phi-2
tags:
  - generated_from_trainer
model-index:
  - name: V0503HMA22H
    results: []

V0503HMA22H

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0674

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 80
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.8681 0.09 10 0.4172
0.2073 0.18 20 0.1180
0.1143 0.27 30 0.0880
0.0961 0.36 40 0.0789
0.0804 0.45 50 0.0744
0.0861 0.54 60 0.0761
0.0787 0.63 70 0.0696
0.0757 0.73 80 0.0854
0.0807 0.82 90 0.0686
0.0806 0.91 100 0.0697
0.0791 1.0 110 0.0647
0.0651 1.09 120 0.0673
0.063 1.18 130 0.0786
0.0623 1.27 140 0.0629
0.0638 1.36 150 0.0735
0.0739 1.45 160 0.0622
0.0593 1.54 170 0.0639
0.0675 1.63 180 0.0626
0.0555 1.72 190 0.0615
0.068 1.81 200 0.0609
0.0555 1.9 210 0.0609
0.0503 1.99 220 0.0582
0.0366 2.08 230 0.0591
0.0334 2.18 240 0.0705
0.0294 2.27 250 0.0722
0.0296 2.36 260 0.0685
0.0369 2.45 270 0.0674
0.0303 2.54 280 0.0682
0.0286 2.63 290 0.0684
0.0312 2.72 300 0.0680
0.0323 2.81 310 0.0675
0.0304 2.9 320 0.0674
0.0341 2.99 330 0.0674

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1