Hyperion-3.0-Mistral-7B-alpha

Model Details

  • Model Name: Locutusque/Hyperion-3.0-Mistral-7B-alpha
  • Base Model: mistralai/Mistral-7B-v0.1
  • Publisher: Locutusque
  • Model Type: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning.
  • Language: Multi-domain, English language.
  • License: Apache-2.0

Model Description

Locutusque/Hyperion-3.0-Mistral-7B-alpha is a state-of-the-art language model fine-tuned on the Hyperion-v3.0 dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. This model is designed to greatly outperform its predecessors.

Intended Use

This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios:

  • AI-driven tutoring systems for science, medicine, mathematics, and computer science.
  • Assistive tools for professionals requiring fast and accurate domain-specific information retrieval.
  • Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning.
  • Automation in code generation and understanding complex programming context.

Training Data

The Locutusque/Hyperion-3.0-Mistral-7B-alpha model was fine-tuned on 200,000 examples of the Hyperion-3.0 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks.

Quants

ExLlamaV2: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-alpha-exl2

GGUF: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-alpha-GGUF

Evaluation Results

Zero-shot AGIEval

Tasks Version Filter n-shot Metric Value Stderr
agieval_nous N/A none None acc_norm 0.3500 Β± 0.0092
none None acc 0.3519 Β± 0.0093
- agieval_aqua_rat 1 none None acc 0.2087 Β± 0.0255
none None acc_norm 0.2165 Β± 0.0259
- agieval_logiqa_en 1 none None acc 0.3164 Β± 0.0182
none None acc_norm 0.3533 Β± 0.0187
- agieval_lsat_ar 1 none None acc 0.2348 Β± 0.0280
none None acc_norm 0.2174 Β± 0.0273
- agieval_lsat_lr 1 none None acc 0.3529 Β± 0.0212
none None acc_norm 0.3647 Β± 0.0213
- agieval_lsat_rc 1 none None acc 0.4721 Β± 0.0305
none None acc_norm 0.4201 Β± 0.0301
- agieval_sat_en 1 none None acc 0.6019 Β± 0.0342
none None acc_norm 0.6117 Β± 0.0340
- agieval_sat_en_without_passage 1 none None acc 0.4078 Β± 0.0343
none None acc_norm 0.3835 Β± 0.0340
- agieval_sat_math 1 none None acc 0.3091 Β± 0.0312
none None acc_norm 0.2364 Β± 0.0287

5 shot CoT MMLU

Tasks Version Filter n-shot Metric Value Stderr
mmlu_flan_cot_fewshot N/A get-answer 0 exact_match 0.5924 Β± 0.0118
- mmlu_flan_cot_fewshot_humanities N/A get-answer 0 exact_match 0.5077 Β± 0.0206
- mmlu_flan_cot_fewshot_formal_logic 0 get-answer 0 exact_match 0.2143 Β± 0.1138
- mmlu_flan_cot_fewshot_high_school_european_history 0 get-answer 0 exact_match 0.6111 Β± 0.1182
- mmlu_flan_cot_fewshot_high_school_us_history 0 get-answer 0 exact_match 0.7727 Β± 0.0914
- mmlu_flan_cot_fewshot_high_school_world_history 0 get-answer 0 exact_match 0.6154 Β± 0.0973
- mmlu_flan_cot_fewshot_international_law 0 get-answer 0 exact_match 0.9231 Β± 0.0769
- mmlu_flan_cot_fewshot_jurisprudence 0 get-answer 0 exact_match 0.3636 Β± 0.1521
- mmlu_flan_cot_fewshot_logical_fallacies 0 get-answer 0 exact_match 0.7222 Β± 0.1086
- mmlu_flan_cot_fewshot_moral_disputes 0 get-answer 0 exact_match 0.5526 Β± 0.0817
- mmlu_flan_cot_fewshot_moral_scenarios 0 get-answer 0 exact_match 0.3900 Β± 0.0490
- mmlu_flan_cot_fewshot_philosophy 0 get-answer 0 exact_match 0.7647 Β± 0.0738
- mmlu_flan_cot_fewshot_prehistory 0 get-answer 0 exact_match 0.7143 Β± 0.0775
- mmlu_flan_cot_fewshot_professional_law 0 get-answer 0 exact_match 0.3471 Β± 0.0366
- mmlu_flan_cot_fewshot_world_religions 0 get-answer 0 exact_match 0.8947 Β± 0.0723
- mmlu_flan_cot_fewshot_other N/A get-answer 0 exact_match 0.6921 Β± 0.0240
- mmlu_flan_cot_fewshot_business_ethics 0 get-answer 0 exact_match 0.9091 Β± 0.0909
- mmlu_flan_cot_fewshot_clinical_knowledge 0 get-answer 0 exact_match 0.5517 Β± 0.0940
- mmlu_flan_cot_fewshot_college_medicine 0 get-answer 0 exact_match 0.7727 Β± 0.0914
- mmlu_flan_cot_fewshot_global_facts 0 get-answer 0 exact_match 0.6000 Β± 0.1633
- mmlu_flan_cot_fewshot_human_aging 0 get-answer 0 exact_match 0.6522 Β± 0.1015
- mmlu_flan_cot_fewshot_management 0 get-answer 0 exact_match 0.9091 Β± 0.0909
- mmlu_flan_cot_fewshot_marketing 0 get-answer 0 exact_match 0.8400 Β± 0.0748
- mmlu_flan_cot_fewshot_medical_genetics 0 get-answer 0 exact_match 1.0000 Β± 0.0000
- mmlu_flan_cot_fewshot_miscellaneous 0 get-answer 0 exact_match 0.7791 Β± 0.0450
- mmlu_flan_cot_fewshot_nutrition 0 get-answer 0 exact_match 0.6667 Β± 0.0833
- mmlu_flan_cot_fewshot_professional_accounting 0 get-answer 0 exact_match 0.4194 Β± 0.0901
- mmlu_flan_cot_fewshot_professional_medicine 0 get-answer 0 exact_match 0.6774 Β± 0.0853
- mmlu_flan_cot_fewshot_virology 0 get-answer 0 exact_match 0.3889 Β± 0.1182
- mmlu_flan_cot_fewshot_social_sciences N/A get-answer 0 exact_match 0.6973 Β± 0.0239
- mmlu_flan_cot_fewshot_econometrics 0 get-answer 0 exact_match 0.3333 Β± 0.1421
- mmlu_flan_cot_fewshot_high_school_geography 0 get-answer 0 exact_match 0.9091 Β± 0.0627
- mmlu_flan_cot_fewshot_high_school_government_and_politics 0 get-answer 0 exact_match 0.8095 Β± 0.0878
- mmlu_flan_cot_fewshot_high_school_macroeconomics 0 get-answer 0 exact_match 0.6279 Β± 0.0746
- mmlu_flan_cot_fewshot_high_school_microeconomics 0 get-answer 0 exact_match 0.6154 Β± 0.0973
- mmlu_flan_cot_fewshot_high_school_psychology 0 get-answer 0 exact_match 0.9167 Β± 0.0360
- mmlu_flan_cot_fewshot_human_sexuality 0 get-answer 0 exact_match 0.5000 Β± 0.1508
- mmlu_flan_cot_fewshot_professional_psychology 0 get-answer 0 exact_match 0.6667 Β± 0.0572
- mmlu_flan_cot_fewshot_public_relations 0 get-answer 0 exact_match 0.5833 Β± 0.1486
- mmlu_flan_cot_fewshot_security_studies 0 get-answer 0 exact_match 0.4444 Β± 0.0975
- mmlu_flan_cot_fewshot_sociology 0 get-answer 0 exact_match 0.7727 Β± 0.0914
- mmlu_flan_cot_fewshot_us_foreign_policy 0 get-answer 0 exact_match 0.7273 Β± 0.1408
- mmlu_flan_cot_fewshot_stem N/A get-answer 0 exact_match 0.5164 Β± 0.0265
- mmlu_flan_cot_fewshot_abstract_algebra 0 get-answer 0 exact_match 0.4545 Β± 0.1575
- mmlu_flan_cot_fewshot_anatomy 0 get-answer 0 exact_match 0.3571 Β± 0.1329
- mmlu_flan_cot_fewshot_astronomy 0 get-answer 0 exact_match 0.5000 Β± 0.1291
- mmlu_flan_cot_fewshot_college_biology 0 get-answer 0 exact_match 0.5625 Β± 0.1281
- mmlu_flan_cot_fewshot_college_chemistry 0 get-answer 0 exact_match 0.3750 Β± 0.1830
- mmlu_flan_cot_fewshot_college_computer_science 0 get-answer 0 exact_match 0.2727 Β± 0.1408
- mmlu_flan_cot_fewshot_college_mathematics 0 get-answer 0 exact_match 0.2727 Β± 0.1408
- mmlu_flan_cot_fewshot_college_physics 0 get-answer 0 exact_match 0.4545 Β± 0.1575
- mmlu_flan_cot_fewshot_computer_security 0 get-answer 0 exact_match 0.7273 Β± 0.1408
- mmlu_flan_cot_fewshot_conceptual_physics 0 get-answer 0 exact_match 0.6154 Β± 0.0973
- mmlu_flan_cot_fewshot_electrical_engineering 0 get-answer 0 exact_match 0.6875 Β± 0.1197
- mmlu_flan_cot_fewshot_elementary_mathematics 0 get-answer 0 exact_match 0.7317 Β± 0.0701
- mmlu_flan_cot_fewshot_high_school_biology 0 get-answer 0 exact_match 0.7188 Β± 0.0808
- mmlu_flan_cot_fewshot_high_school_chemistry 0 get-answer 0 exact_match 0.3636 Β± 0.1050
- mmlu_flan_cot_fewshot_high_school_computer_science 0 get-answer 0 exact_match 0.6667 Β± 0.1667
- mmlu_flan_cot_fewshot_high_school_mathematics 0 get-answer 0 exact_match 0.4138 Β± 0.0931
- mmlu_flan_cot_fewshot_high_school_physics 0 get-answer 0 exact_match 0.2353 Β± 0.1060
- mmlu_flan_cot_fewshot_high_school_statistics 0 get-answer 0 exact_match 0.4348 Β± 0.1057
- mmlu_flan_cot_fewshot_machine_learning 0 get-answer 0 exact_match 0.3636 Β± 0.1521
Groups Version Filter n-shot Metric Value Stderr
mmlu_flan_cot_fewshot N/A get-answer 0 exact_match 0.5924 Β± 0.0118
- mmlu_flan_cot_fewshot_humanities N/A get-answer 0 exact_match 0.5077 Β± 0.0206
- mmlu_flan_cot_fewshot_other N/A get-answer 0 exact_match 0.6921 Β± 0.0240
- mmlu_flan_cot_fewshot_social_sciences N/A get-answer 0 exact_match 0.6973 Β± 0.0239
- mmlu_flan_cot_fewshot_stem N/A get-answer 0 exact_match 0.5164 Β± 0.0265

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Locutusque/Hyperion-3.0-Mistral-7B-alpha"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# For a text generation task
input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n"
input_ids = tokenizer.encode(input_text, return_tensors="pt")

# Generate a response
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Known Limitations

The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality.

This model is also very compliant, it will respond to any request. Please make sure to build upon this model with DPO if you plan on using it for enterprise-level deployment.

Licensing Information

This model is released under the Apache-2.0 license.

Downloads last month
104
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Locutusque/Hyperion-3.0-Mistral-7B-alpha

Merges
1 model
Quantizations
3 models

Dataset used to train Locutusque/Hyperion-3.0-Mistral-7B-alpha

Spaces using Locutusque/Hyperion-3.0-Mistral-7B-alpha 6