|
--- |
|
license: other |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
- Mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- science |
|
- physics |
|
- chemistry |
|
- biology |
|
- math |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
datasets: |
|
- allenai/ai2_arc |
|
- camel-ai/physics |
|
- camel-ai/chemistry |
|
- camel-ai/biology |
|
- camel-ai/math |
|
- metaeval/reclor |
|
- openbookqa |
|
- mandyyyyii/scibench |
|
- derek-thomas/ScienceQA |
|
- TIGER-Lab/ScienceEval |
|
- jondurbin/airoboros-3.2 |
|
- LDJnr/Capybara |
|
- Cot-Alpaca-GPT4-From-OpenHermes-2.5 |
|
- STEM-AI-mtl/Electrical-engineering |
|
- knowrohit07/saraswati-stem |
|
- sablo/oasst2_curated |
|
- glaiveai/glaive-code-assistant |
|
- lmsys/lmsys-chat-1m |
|
- TIGER-Lab/MathInstruct |
|
- bigbio/med_qa |
|
- meta-math/MetaMathQA-40K |
|
- openbookqa |
|
- piqa |
|
- metaeval/reclor |
|
- derek-thomas/ScienceQA |
|
- scibench |
|
- sciq |
|
- Open-Orca/SlimOrca |
|
- migtissera/Synthia-v1.3 |
|
- TIGER-Lab/ScienceEval |
|
model-index: |
|
- name: Einstein-v4-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 64.68 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 83.75 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 62.31 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 55.15 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.24 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 57.62 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-7B |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/U0zyXVGj-O8a7KP3BvPue.png) |
|
# π¬ Einstein-v4-7B |
|
|
|
This model is a full fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on diverse datasets. |
|
|
|
This model is finetuned using `7xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). |
|
|
|
This model's training was sponsored by [sablo.ai](https://sablo.ai). |
|
|
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
chat_template: chatml |
|
datasets: |
|
- path: data/merged_all.json |
|
ds_type: json |
|
type: alpaca |
|
conversation: chatml |
|
|
|
- path: data/capybara_sharegpt.json |
|
ds_type: json |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
- path: data/synthia-v1.3_sharegpt_12500.json |
|
ds_type: json |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
- path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json |
|
ds_type: json |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
- path: data/slimorca_dedup_filtered_95k_sharegpt.json |
|
ds_type: json |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
- path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json |
|
ds_type: json |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.005 |
|
output_dir: ./Einstein-v4-model |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
|
|
wandb_project: Einstein |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
hub_model_id: Weyaxi/Einstein-v4-7B |
|
|
|
save_safetensors: true |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 1 |
|
num_epochs: 1.5 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 2 # changed |
|
eval_table_size: |
|
eval_table_max_new_tokens: 128 |
|
saves_per_epoch: 4 |
|
debug: |
|
|
|
deepspeed: zero3_bf16.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "<|im_end|>" |
|
unk_token: "<unk>" |
|
tokens: |
|
- "<|im_start|>" |
|
|
|
resume_from_checkpoint: Einstein-v4-model/checkpoint-521 |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# π¬ Prompt Template |
|
|
|
You can use this prompt template while using the model: |
|
|
|
### ChatML |
|
|
|
``` |
|
<|im_start|>system |
|
{system}<|im_end|> |
|
<|im_start|>user |
|
{user}<|im_end|> |
|
<|im_start|>assistant |
|
{asistant}<|im_end|> |
|
``` |
|
|
|
This prompt template is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the |
|
`tokenizer.apply_chat_template()` method: |
|
|
|
```python |
|
messages = [ |
|
{"role": "system", "content": "You are helpful AI asistant."}, |
|
{"role": "user", "content": "Hello!"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") |
|
model.generate(**gen_input) |
|
``` |
|
|
|
# π Quantizationed versions |
|
|
|
Quantizationed versions of this model is available. |
|
|
|
## Exl2 [@bartowski](https://hf.co/bartowski): |
|
|
|
- https://huggingface.co/bartowski/Einstein-v4-7B-exl2 |
|
|
|
You can switch up branches in the repo to use the one you want |
|
|
|
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | |
|
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ | |
|
| [8_0](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | |
|
| [6_5](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | |
|
| [5_0](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | |
|
| [4_25](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | |
|
| [3_5](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | |
|
|
|
|
|
# π― [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |66.62| |
|
|AI2 Reasoning Challenge (25-Shot)|64.68| |
|
|HellaSwag (10-Shot) |83.75| |
|
|MMLU (5-Shot) |62.31| |
|
|TruthfulQA (0-shot) |55.15| |
|
|Winogrande (5-shot) |76.24| |
|
|GSM8k (5-shot) |57.62| |
|
|
|
# π€ Additional information about training |
|
|
|
This model is full fine-tuned for 1.5 epoch. |
|
|
|
Total number of steps was 1562. |
|
|
|
<details><summary>Loss graph</summary> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/UO0NJz9VN5NncIXi82Nk2.png) |
|
</details><br> |
|
|
|
# π€ Acknowledgments |
|
|
|
Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model. |
|
|
|
Thanks to all the dataset authors mentioned in the datasets section. |
|
|
|
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. |
|
|
|
Thanks to all open source AI community. |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
|
If you would like to support me: |
|
|
|
[β Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi) |
|
|