๐ฃ Looking for labeled, high-quality synthetic audio/TTS data ๐ฃ Have you been or are you currently calling API endpoints from OpenAI, ElevenLabs, etc? Do you have labeled audio data sitting around gathering dust? Let's talk! Join https://discord.gg/QuGxSWBfQy or comment down below.
If your data exceeds quantity & quality thresholds and is approved into the next hexgrad/Kokoro-82M training mix, and you permissively DM me the data under an effective Apache license, then I will DM back the corresponding voicepacks for YOUR data if/when the next Apache-licensed Kokoro base model drops.
What does this mean? If you've been calling closed-source TTS or audio API endpoints to: - Build voice agents - Make long-form audio, like audiobooks or podcasts - Handle customer support, etc Then YOU can contribute to the training mix and get useful artifacts in return. โค๏ธ
3C3H AraGen Leaderboard welcomes today deepseek-ai/DeepSeek-V3 and 12 other models (including the late gpt-3.5 ๐) to the ranking of best LLMs in Arabic !
Observations: - DeepSeek-v3 ranked 3rd and only Open model among the top 5 !
- A 14B open model (Qwen/Qwen2.5-14B-Instruct) outperforms gpt-3.5-turbo-0125 (from last year). This shows how much we came in advancing and supporting Arabic presence within the LLM ecosystem !
- Contrary to what observed in likelihood-acc leaderboards (like OALL/Open-Arabic-LLM-Leaderboard) further finetuned models like maldv/Qwentile2.5-32B-Instruct actually decreased the performance compared to the original model Qwen/Qwen2.5-32B-Instruct. It's worth to note that the decrease is statiscally insignificant which imply that at best, the out-domain finetuning do not really hurts the model original capabilities acquired during pretraining. Previous work addressed this (finetuning VS pretraining) but more investigation in this regard is required (any PhDs here ? This could be your question ...)