gemma coder logo

Gemma Coder πŸ‘©β€πŸ’»

Gemma 2B fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library.

Model description 🧠

Gemma-2b

Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone.

Training and evaluation data πŸ“š

CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.

Training hyperparameters βš™

Training took 1h 40 min on Free Colab T4 GPU (16GB VRAM) with the following params:

num_train_epochs=2,
per_device_train_batch_size=2,
per_device_eval_batch_size=1,
gradient_accumulation_steps=32
learning_rate=2.5e-5,
optim="paged_adamw_8bit",
logging_steps=5,
seed=66,
load_best_model_at_end=True,
save_strategy="steps",
save_steps=50,                
evaluation_strategy="steps",
eval_steps=50,
save_total_limit=2,
remove_unused_columns=True,
fp16=True,
bf16=False

Training results πŸ—’οΈ

Step Training Loss Validation Loss
50 1.467800 1.450770
100 1.060000 1.064840
150 0.900200 0.922290
200 0.848400 0.879911
250 0.838100 0.867354

Eval results πŸ“Š

WIP

Example of usage πŸ‘©β€πŸ’»

I recommend install the following version of torch:

pip install "torch>=2.1.1" -U
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model_id = "MAISAAI/gemma-2b-coder"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")

def generate(
        instruction,
        max_new_tokens=256,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=2,
        **kwargs,
):
    system = f"<bos><|system|>\nYou are a helpful coding assistant.<eos>\n"
    prompt = f"{system}<|user|>\n{instruction}<eos>\n<|assistant|>\n"
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s, skip_special_tokens=True)
    return output.split("<|assistant|>")[1]

instruction = """
Edit the following XML code to add a navigation bar to the top of a web page
<html>
<head>
  <title>Maisa</title>
</head>
"""
print(generate(instruction))

Citation

@misc {maisa_ai_2024,
    author       = { {MAISA AI} },
    title        = { gemma-2b-coder (Revision e5e4e5b) },
    year         = 2024,
    url          = { https://huggingface.co/MAISAAI/gemma-2b-coder },
    doi          = { 10.57967/hf/2208 },
    publisher    = { Hugging Face }
}
Downloads last month
363
Safetensors
Model size
2.51B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MAISAAI/gemma-2b-coder

Merges
1 model
Quantizations
1 model

Dataset used to train MAISAAI/gemma-2b-coder