Current Training Steps: 108,000
This repo contains a merged model using low-rank adaptation (LoRA) for LLaMA-13b fit on the Stanford-Alpaca-52k and databricks-dolly-15k data in 52 languages.
Dataset Creation
- English Instructions: The English instuctions are obtained from alpaca-52k, and dolly-15k.
- Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023).
- Output Generation: We generate output from
gpt-3.5-turbo
for each language (conducted on April 2023).
Training Parameters
The code for training the model is provided in our github, which is adapted from Alpaca-LoRA. This version of the weights was trained with the following hyperparameters:
- Epochs: 10
- Batch size: 128
- Cutoff length: 512
- Learning rate: 3e-4
- Lora r: 64
- Lora target modules: q_proj, k_proj, v_proj, o_proj
That is:
python finetune.py \
--base_model='decapoda-research/llama-13b-hf' \
--num_epochs=5 \
--batch_size=128 \
--cutoff_len=512 \
--group_by_length \
--output_dir='./bactrian-x-llama-13b-lora' \
--lora_target_modules='q_proj,k_proj,v_proj,o_proj' \
--lora_r=64 \
--micro_batch_size=32
Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X.
Discussion of Biases
(1) Translation bias; (2) Potential English-culture bias in the translated dataset.
Citation Information
@misc{li2023bactrianx,
title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation},
author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin},
year={2023},
eprint={2305.15011},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.