Model Card for Model ID
base_model : dmis-lab/biobert-v1.1
hidden_size : 768
max_position_embeddings : 512
num_attention_heads : 12
num_hidden_layers : 12
vocab_size : 28996
Basic usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
import numpy as np
# match tag
id2tag = {0:'O', 1:'B_MT', 2:'I_MT'}
# load model & tokenizer
MODEL_NAME = 'MDDDDR/dmis_lab_biobert_v1.1_NER'
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# prepare input
text = 'mental disorder can also contribute to the development of diabetes through various mechanism including increased stress, poor self care behavior, and adverse effect on glucose metabolism.'
tokenized = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**tokenized)
# result
pred = np.argmax(output[0].cpu().detach().numpy(), axis=2)[0][1:-1]
# check pred
for txt, pred in zip(tokenizer.tokenize(text), pred):
print("{}\t{}".format(id2tag[pred], txt))
# B_MT mental
# B_MT disorder
Framework versions
- transformers : 4.39.1
- torch : 2.1.0+cu121
- datasets : 2.18.0
- tokenizers : 0.15.2
- numpy : 1.20.0
- Downloads last month
- 112
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.