π₯ Chat with Magpie Here!
π¦ Llama-3-8B-Magpie-Align-v0.1
Project Web: https://magpie-align.github.io/
Online Model Demo: https://huggingface.co/spaces/flydust/Chat-with-Magpie
Arxiv Technical Report: https://arxiv.org/abs/2406.08464
Codes: https://github.com/magpie-align/magpie
Model Overview
This model is an aligned version of meta-llama/Meta-Llama-3-8B. We apply the following pipeline:
- We first use Magpie-Align/Magpie-Pro-MT-300K-v0.1 dataset and perform SFT -> Magpie-Align/Llama-3-8B-Magpie-Align-SFT-v0.1
- We then perform DPO on the princeton-nlp/llama3-ultrafeedback dataset.
The overall performance is even better than the official Llama-3-8B-Instruct Model!
- Alpaca Eval 2 (vs GPT-4-Turbo-1106): 38.52 (LC), 38.47 (WR)
- Alpaca Eval 2 (vs Llama-3-8B-Instruct): 69.37 (LC), 70.05 (WR)
- Arena Hard: 32.4
- WildBench: 39.3 ((was) Best <30B Model! π)
- Zero-Eval GSM: 54.62
Model Performance
We compare our Llama-3-8B-Magpie-Align with official and other open-aligned LLMs that have been fine-tuned from base models and have publicly released their training datasets. The results are as follows:
+---------------------------------------------+--------------------+--------------------+-----------------------+------------+
| Aligned Model ID | MT-Bench | Alpaca Eval 2 | Alpaca Eval 2 | Arena Hard |
| | | (GPT-4-Turbo-1106) | (Llama-3-8B-Instruct) | |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| | R1 | R2 | AVG | LC WR | WR | LC WR | WR | Score |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| meta-llama/Meta-Llama-3-8B-Instruct | 8.31 | 7.65 | 7.98 | 22.92 | 22.57 | 50 | 50 | 20.6 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| princeton-nlp/Llama-3-Base-8B-SFT-DPO | 8.12 | 7.23 | 7.67 | 17.71 | 15.34 | 43.73 | 38.80 | 14.8 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| NousResearch/Hermes-2-Pro-Llama-3-8B | 8.05 | 7.35 | 7.70 | 15.60 | 12.86 | 36.37 | 30.52 | 11.5 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| allenai/llama-3-tulu-2-dpo-8b | 7.71 | 7.15 | 7.43 | 14.89 | 14.80 | 35.43 | 35.42 | 11.7 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| cognitivecomputations/dolphin-2.9-llama3-8b | 7.97 | 6.98 | 7.47 | 12.50 | 8.79 | 32.67 | 22.80 | 8.2 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| openchat/openchat-3.6-8b-20240522 | 7.83 | 7.23 | 7.53 | 17.70 | 12.53 | 41.30 | 30.79 | 6.7 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| Magpie-Align/Llama-3-8B-Magpie-Align-v0.1 | 8.01 | 7.63 | 7.82 | 38.52 | 38.47 | 69.37 | 70.05 | 32.4 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
| Magpie-Align/Llama-3-8B-Magpie-Align-v0.2 | 7.81 | 7.64 | 7.73 | 49.86 | 51.98 | 75.17 | 78.20 | 37.5 |
+---------------------------------------------+------+------+------+----------+---------+-----------+-----------+------------+
π Other Information
License: Please follow Meta Llama 3 Community License.
Conversation Template: Please use Llama 3 official chat template for the best performance.
How to use it? Please check the official Llama 3 repository for detailed instructions. Simply replace the original model_id
with Magpie-Align/Llama-3-8B-Magpie-Align-v0.1
.
The detailed training pipeline is as follows.
Stage 1: Supervised Fine-tuning
We use Axolotl for SFT.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8807 | 0.0007 | 1 | 0.9001 |
0.5113 | 0.3337 | 464 | 0.5178 |
0.4668 | 0.6673 | 928 | 0.4792 |
0.4492 | 1.0010 | 1392 | 0.4582 |
0.3498 | 1.3205 | 1856 | 0.4575 |
0.3525 | 1.6542 | 2320 | 0.4555 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-3-8B-Magpie-Pro-300K-MT
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Stage 2: Direct Preference Optimization
We use alignment handbook for DPO.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.628 | 0.2138 | 100 | 0.6641 | -0.8806 | -1.0146 | 0.6240 | 0.1340 | -362.7133 | -343.6060 | -0.7539 | -0.7528 |
0.6935 | 0.4275 | 200 | 0.6352 | -1.3660 | -1.6311 | 0.6545 | 0.2651 | -424.3628 | -392.1437 | -0.6649 | -0.6629 |
0.6376 | 0.6413 | 300 | 0.6178 | -1.3533 | -1.6413 | 0.6748 | 0.2880 | -425.3859 | -390.8818 | -0.6753 | -0.6758 |
0.5888 | 0.8550 | 400 | 0.6088 | -1.6321 | -1.9785 | 0.6829 | 0.3464 | -459.1051 | -418.7560 | -0.6440 | -0.6435 |
It achieves the following results on the evaluation set:
- Loss: 0.6084
- Rewards/chosen: -1.6265
- Rewards/rejected: -1.9735
- Rewards/accuracies: 0.6809
- Rewards/margins: 0.3470
- Logps/rejected: -458.6070
- Logps/chosen: -418.2021
- Logits/rejected: -0.6447
- Logits/chosen: -0.6439
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
See alignment handbook config
# Model arguments
model_name_or_path: Magpie-Align/Llama-3-8B-Magpie-Pro-MT-SFT-v0.1
torch_dtype: null
# Data training arguments
# For definitions, see: src/h4/training/config.py
dataset_mixer:
princeton-nlp/llama3-ultrafeedback: 1.0
dataset_splits:
- train
- test
preprocessing_num_workers: 12
# DPOTrainer arguments
bf16: true
beta: 0.01
do_eval: true
evaluation_strategy: steps
eval_steps: 100
gradient_accumulation_steps: 16
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: False
hub_model_id: Magpie-Align/Llama-3-8B-Magpie-Pro-MT-UltraDPO2
learning_rate: 1.0e-6
log_level: info
logging_steps: 1
lr_scheduler_type: cosine
max_length: 2048
max_prompt_length: 1800
num_train_epochs: 1
optim: adamw_torch
output_dir: data/magpie-pro-mt-ultradpo-1e-6
per_device_train_batch_size: 2
per_device_eval_batch_size: 4
push_to_hub: true
save_strategy: "steps"
save_steps: 100
save_total_limit: 1
seed: 42
warmup_ratio: 0.1
Downstream Performance
Datasets | Llama-3-8B-Magpie-Align-v0.1 |
---|---|
MMLU (5) | 64.61 |
ARC (25) | 62.03 |
HellaSwag (25) | 82.10 |
TruthfulQA (0) | 58.26 |
Winogrande (5) | 73.01 |
Paper Abstract
Click Here
High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the left-side templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We perform a comprehensive analysis of the extracted data and select 300K high-quality instances. To compare Magpie data with other public instruction datasets, we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that in some tasks, models fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through supervised fine-tuning (SFT) and subsequent feedback learning. We also show that using Magpie solely for SFT can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.π Citation
If you find the model, data, or code useful, please cite our paper:
@article{xu2024magpie,
title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing},
author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin},
year={2024},
eprint={2406.08464},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Please also cite the creators of preference datasets:
SimPO paper:
@article{meng2024simpo,
title={{SimPO}: Simple preference optimization with a reference-free reward},
author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
journal={arXiv preprint arXiv:2405.14734},
year={2024}
}
UltraFeedback paper:
@article{cui2023ultrafeedback,
title={{UltraFeedback}: Boosting language models with high-quality feedback},
author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
journal={arXiv preprint arXiv:2310.01377},
year={2023}
}
ArmoRM paper:
@article{wang2024interpretable,
title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
journal={arXiv preprint arXiv:2406.12845},
year={2024}
}
Questions? Please contact Zhangchen by email.
- Downloads last month
- 2,335
Model tree for Magpie-Align/Llama-3-8B-Magpie-Align-v0.1
Base model
meta-llama/Meta-Llama-3-8B