Meta-LLama3-Instruct-Arabic
Meta-LLama3-Instruct-Arabic is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic.
Model Details
- Model Name: Meta-LLama3-Instruct-Arabic
- Base Model: LLaMa
- Languages: Arabic
- Tasks: Text Generation,Language Understanding
- Quantization: [Specify if it’s quantized, e.g., 4-bit quantization with
bitsandbytes
, or float32]
Installation
To use this model, you need the unsloth
andtransformers
library from Hugging Face. You can install it as follows:
! pip install transformers bitsandbytes
how to use:
from transformers import AutoTokenizer, AutoModelForCausalLM
from IPython.display import Markdown
import textwrap
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic")
model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic",load_in_4bit =True)
alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب.
### التعليمات:
{}
### الاستجابة:
{}"""
# Format the prompt with instruction and an empty output placeholder
formatted_prompt = alpaca_prompt.format(
"ماذا تعرف عن الحضاره المصريه" , # instruction
"" # Leave output blank for generation
)
# Tokenize the formatted string directly
input_ids = tokenizer.encode(formatted_prompt, return_tensors="pt") # Use 'cuda' if you want to run on GPU
def to_markdown(text):
text = text.replace('•','*')
return Markdown(textwrap.indent(text, '>', predicate=lambda _: True))
# Generate text
output = model.generate(
input_ids,
max_length=128, # Adjust max length as needed
num_return_sequences=1, # Number of generated responses
no_repeat_ngram_size=2, # Prevent repetition
top_k=50, # Filter to top-k tokens
top_p=0.9, # Use nucleus sampling
temperature=0.7 , # Control creativity level
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
to_markdown(generated_text)
- Downloads last month
- 46
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.