MahmoudIbrahim commited on
Commit
da29463
·
verified ·
1 Parent(s): 7c1f33a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -9,13 +9,13 @@ pipeline_tag: text-generation
9
  tags:
10
  - finance
11
  ---
12
- # Meta_LLama3_Arabic
13
 
14
- **Meta_LLama3_Arabic** is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic.
15
 
16
  ## Model Details
17
 
18
- - **Model Name**: Meta_LLama3_Arabic
19
  - **Base Model**: LLaMa
20
  - **Languages**: Arabic
21
  - **Tasks**: Text Generation,Language Understanding
@@ -37,8 +37,8 @@ from IPython.display import Markdown
37
  import textwrap
38
 
39
  # Load tokenizer and model
40
- tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Meta_LLama3_Arabic")
41
- model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Meta_LLama3_Arabic",load_in_4bit =True)
42
 
43
 
44
  alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب.
 
9
  tags:
10
  - finance
11
  ---
12
+ # Meta-LLama3-Instruct-Arabic
13
 
14
+ **Meta-LLama3-Instruct-Arabic** is a fine-tuned version of Meta's LLaMa model, specialized for Arabic language tasks. This model has been designed for a variety of NLP tasks including text generation,and language comprehension in Arabic.
15
 
16
  ## Model Details
17
 
18
+ - **Model Name**: Meta-LLama3-Instruct-Arabic
19
  - **Base Model**: LLaMa
20
  - **Languages**: Arabic
21
  - **Tasks**: Text Generation,Language Understanding
 
37
  import textwrap
38
 
39
  # Load tokenizer and model
40
+ tokenizer = AutoTokenizer.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic")
41
+ model = AutoModelForCausalLM.from_pretrained("MahmoudIbrahim/Meta-LLama3-Instruct-Arabic",load_in_4bit =True)
42
 
43
 
44
  alpaca_prompt = """فيما يلي تعليمات تصف مهمة، إلى جانب مدخل يوفر سياقاً إضافياً. اكتب استجابة تُكمل الطلب بشكل مناسب.