|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium.en |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: ./600 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ./600 |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 600 SF 1000 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6509 |
|
- Wer Ortho: 30.9402 |
|
- Wer: 20.0933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- training_steps: 800 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| |
|
| 1.6008 | 2.6667 | 100 | 1.0986 | 41.0350 | 29.9605 | |
|
| 0.8522 | 5.3333 | 200 | 0.7925 | 32.0335 | 21.0621 | |
|
| 0.6516 | 8.0 | 300 | 0.7207 | 30.5029 | 19.9856 | |
|
| 0.5337 | 10.6667 | 400 | 0.6885 | 30.5758 | 20.3803 | |
|
| 0.4489 | 13.3333 | 500 | 0.6709 | 31.0496 | 20.3086 | |
|
| 0.4003 | 16.0 | 600 | 0.6577 | 31.0496 | 20.2727 | |
|
| 0.3588 | 18.6667 | 700 | 0.6533 | 31.0496 | 20.0933 | |
|
| 0.3499 | 21.3333 | 800 | 0.6509 | 30.9402 | 20.0933 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|