Marcusxx's picture
Upload processor
831f71b verified
metadata
language:
  - ko
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
base_model: openai/whisper-large
datasets:
  - Marcusxx/gwanju
metrics:
  - wer
model-index:
  - name: gwanju_largeWER_model
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Marcusxx/gwanju
          type: Marcusxx/gwanju
          args: 'config: ko, split: valid'
        metrics:
          - type: wer
            value: 41.85458286890166
            name: Wer

gwanju_largeWER_model

This model is a fine-tuned version of openai/whisper-large on the Marcusxx/gwanju dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3334
  • Wer: 41.8546

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4683 0.0741 250 0.4884 104.4328
0.4578 0.1482 500 0.4522 55.8304
0.4675 0.2223 750 0.4379 65.3948
0.4338 0.2964 1000 0.4225 65.4206
0.4547 0.3705 1250 0.4023 63.5814
0.3676 0.4446 1500 0.3914 47.9551
0.3752 0.5187 1750 0.3840 48.3838
0.3584 0.5928 2000 0.3745 44.8641
0.4221 0.6669 2250 0.3638 42.4548
0.3432 0.7410 2500 0.3563 42.7206
0.3993 0.8151 2750 0.3497 44.7955
0.3448 0.8892 3000 0.3437 43.3722
0.3441 0.9632 3250 0.3381 40.4270
0.2317 1.0373 3500 0.3350 39.5782
0.2063 1.1114 3750 0.3339 40.8385
0.2016 1.1855 4000 0.3334 41.8546

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1