bioformer-ner-model / README.md
Mardiyyah's picture
Update README.md
b48c91f verified
metadata
license: apache-2.0
base_model: bioformers/bioformer-16L
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: cl_ct_custom_model
    results: []
datasets:
  - tner/bionlp2004
language:
  - en
pipeline_tag: token-classification
inference: true
library_name: transformers

cl_ct_custom_model

This model is a fine-tuned version of bioformers/bioformer-16L on the (https://huggingface.co/datasets/tner/bionlp2004) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2590
  • F1: 0.7609
  • Precision: 0.7112
  • Recall: 0.8181
  • Accuracy: 0.9229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4568 0.9971 259 0.2146 0.8139 0.7920 0.8370 0.9326
0.2115 1.9981 519 0.1907 0.8349 0.8125 0.8586 0.9379
0.1802 2.9990 779 0.1912 0.8407 0.8178 0.8650 0.9394
0.164 4.0 1039 0.1869 0.8449 0.8255 0.8652 0.9401
0.1518 4.9971 1298 0.1819 0.8525 0.8348 0.8710 0.9428
0.1424 5.9981 1558 0.1842 0.8506 0.8351 0.8666 0.9422
0.134 6.9990 1818 0.1869 0.8539 0.8373 0.8712 0.9428
0.128 8.0 2078 0.1889 0.8540 0.8374 0.8712 0.9429
0.1241 8.9971 2337 0.1892 0.8559 0.8401 0.8724 0.9432
0.1199 9.9711 2590 0.1899 0.8552 0.8392 0.8718 0.9431

Eval Classification report

Class Precision Recall F1-Score Support
DNA 0.78 0.84 0.81 2494
RNA 0.83 0.89 0.86 238
Cell Line 0.81 0.85 0.83 1050
Cell Type 0.74 0.79 0.77 775
Protein 0.88 0.90 0.89 6196
Micro Avg 0.84 0.87 0.86 10753
Macro Avg 0.81 0.86 0.83 10753
Weighted Avg 0.84 0.87 0.86 10753

Test Results

Class Precision Recall F1-Score Support
DNA 0.74 0.79 0.76 2210
RNA 0.73 0.76 0.75 287
Cell Line 0.50 0.76 0.61 1057
Cell Type 0.75 0.68 0.71 2761
Protein 0.72 0.87 0.79 10082
Micro Avg 0.71 0.82 0.76 16397
Macro Avg 0.69 0.77 0.72 16397
Weighted Avg 0.72 0.82 0.76 16397

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1