whisper-small-test

This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1505
  • Wer: 17.6506

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 16000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5739 0.1088 1000 0.5302 46.0061
0.4512 0.2176 2000 0.4017 36.9299
0.3804 0.3264 3000 0.3504 33.6799
0.3382 0.4353 4000 0.3146 31.3559
0.3355 0.5441 5000 0.2815 28.3068
0.3085 0.6529 6000 0.2592 26.9714
0.2943 0.7617 7000 0.2387 25.6010
0.2802 0.8705 8000 0.2206 23.7800
0.2611 0.9793 9000 0.2027 22.4196
0.179 1.0881 10000 0.1917 21.3924
0.1712 1.1970 11000 0.1825 20.4576
0.1723 1.3058 12000 0.1737 19.8497
0.1536 1.4146 13000 0.1654 18.7739
0.1509 1.5234 14000 0.1576 18.2609
0.1511 1.6322 15000 0.1526 17.8403
0.1518 1.7410 16000 0.1505 17.6506

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Masternlp/Whisper_model

Finetuned
(2155)
this model

Evaluation results