MatteoFasulo's picture
End of training
ff95220 verified
---
library_name: transformers
base_model: cardiffnlp/twitter-roberta-base-hate
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: twitter-roberta-base-hate_1337
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-hate_1337
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-hate](https://huggingface.co/cardiffnlp/twitter-roberta-base-hate) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3885
- F1-score: 0.8487
- Accuracy: 0.8497
- Precision: 0.8478
- Recall: 0.8521
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|
| No log | 1.0 | 180 | 0.3770 | 0.8354 | 0.8357 | 0.8388 | 0.8430 |
| No log | 2.0 | 360 | 0.3682 | 0.8334 | 0.8357 | 0.8332 | 0.8337 |
| 0.3667 | 3.0 | 540 | 0.3620 | 0.8521 | 0.8531 | 0.8511 | 0.8553 |
| 0.3667 | 4.0 | 720 | 0.3913 | 0.8334 | 0.8357 | 0.8332 | 0.8337 |
| 0.3667 | 5.0 | 900 | 0.3967 | 0.8303 | 0.8322 | 0.8295 | 0.8314 |
| 0.2409 | 6.0 | 1080 | 0.3885 | 0.8487 | 0.8497 | 0.8478 | 0.8521 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0