Max200293's picture
wav2vec2-classic-300m-norwegian-colab-hung
2d2443e
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - voxpopuli
metrics:
  - wer
model-index:
  - name: wav2vec2-classic-300m-norwegian-colab-hung
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: voxpopuli
          type: voxpopuli
          config: fi
          split: test
          args: fi
        metrics:
          - name: Wer
            type: wer
            value: 1.7882131661442007

wav2vec2-classic-300m-norwegian-colab-hung

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8820
  • Wer: 1.7882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7686 2.57 400 2.9953 1.0
2.5005 5.14 800 2.2739 1.9808
1.6554 7.72 1200 2.4720 1.6708
1.1995 10.29 1600 2.2613 1.2480
0.8972 12.86 2000 2.7599 1.8873
0.6962 15.43 2400 3.2783 1.9560
0.5554 18.01 2800 3.2272 1.7544
0.4234 20.58 3200 3.0755 1.5645
0.3341 23.15 3600 3.5022 1.7442
0.2832 25.72 4000 3.7905 1.8324
0.2293 28.3 4400 3.8820 1.7882

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0