Model Card for Model ID

How to Get Started with the Model

To use this adapter:

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

# Load base model in 4 bit
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", load_in_4bit=True)

# Wrap model with pretrained model weights
config = PeftConfig.from_pretrained("MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit")
model = PeftModel.from_pretrained(model, "MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit", config=config)

Prompt Template:

Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.
### Instruction: {instruction}
### Input: {input}
### Response:

Training procedure

The following bitsandbytes quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.7.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit

Adapter
(1798)
this model

Dataset used to train MaziyarPanahi/Llama-2-7b-hf-codealpaca-4bit