metadata
datasets:
- McGill-NLP/WebLINX
- McGill-NLP/WebLINX-full
language:
- en
metrics:
- f1
- iou
- chrf
library_name: transformers
pipeline_tag: text-generation
tags:
- weblinx
- text-generation-inference
- web-agents
- agents
license: llama2
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lù*, Zdeněk Kasner*, Siva ReddyQuickstart
from datasets import load_dataset
from huggingface_hub import snapshot_download
from transformers import pipeline
# Load validation split
valid = load_dataset("McGill-NLP/weblinx", split="validation")
# Download and load the templates
snapshot_download(
"McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*.txt", local_dir="./"
)
with open('templates/llama.txt') as f:
template = f.read()
turn = valid[0]
turn_text = template.format(**turn)
# Load action model and input the text to get prediction
action_model = pipeline(
model="McGill-NLP/Llama-2-7b-chat-weblinx", device=0, torch_dtype='auto'
)
out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True)
pred = out[0]['generated_text']
print("Ref:", turn["action"])
print("Pred:", pred)
Original Model
This model is finetuned on WebLINX using checkpoints previously published on Huggingface Hub.
Click here to access the original model.
License
This model is derived from LLaMA-2, which can only be used with the LLaMA 2 Community License Agreement. By using or distributing any portion or element of this model, you agree to be bound by this Agreement.