Model Abstract

This model was trained for the ELYZA-tasks-100-TV with the Japanese instruction data for LLM.

  • Developed by: Michi-851929
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

Usage

#Install libraries
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U peft

#Import libraries
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
import re

#Token and model names
HF_TOKEN = "token"
base_model_id = "llm-jp/llm-jp-3-13b" 
adapter_id = "Michi-851929/llm-jp-3-13b-finetune"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, token = HF_TOKEN)

#Load datasets
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

#Inference
results = []
for data in tqdm(datasets):

  input = data["input"]
  prompt = f"""### 指示
  {input}
  ### 回答
  """
  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

#Save Results
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')

Special Thanks

I am grateful to Matsuo-Iwasawa Lab with their LLM2024 lectures and sample codes.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Michi-851929/llm-jp-3-13b-finetune

Finetuned
(1125)
this model