このモデルはLuke-japanese-large-liteをファインチューニングしたものです。

このモデルは8つの感情(喜び、悲しみ、期待、驚き、怒り、恐れ、嫌悪、信頼)の内、どの感情が文章に含まれているのか分析することができます。 このモデルはwrimeデータセット( https://huggingface.co/datasets/shunk031/wrime )を用いて学習を行いました。

This model is based on Luke-japanese-large-lite

This model is fine-tuned model which besed on studio-ousia/Luke-japanese-large-lite. This could be able to analyze which emotions (joy or sadness or anticipation or surprise or anger or fear or disdust or trust ) are included. This model was fine-tuned by using wrime dataset.

what is Luke? Lukeとは?[1]

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores.

LUKE achieves state-of-the-art results on five popular NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing). luke-japaneseは、単語とエンティティの知識拡張型訓練済み Transformer モデルLUKEの日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。

how to use 使い方

ステップ1:pythonとpytorch, sentencepieceのインストールとtransformersのアップデート(バージョンが古すぎるとLukeTokenizerが入っていないため) update transformers and install sentencepiece, python and pytorch

ステップ2:下記のコードを実行する Please execute this code

from transformers import AutoTokenizer, AutoModelForSequenceClassification, LukeConfig
import torch
tokenizer = AutoTokenizer.from_pretrained("Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime")
config = LukeConfig.from_pretrained('Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime', output_hidden_states=True)    
model = AutoModelForSequenceClassification.from_pretrained('Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime', config=config)

text='すごく楽しかった。また行きたい。'

max_seq_length=512
token=tokenizer(text,
        truncation=True,
        max_length=max_seq_length,
        padding="max_length")
output=model(torch.tensor(token['input_ids']).unsqueeze(0), torch.tensor(token['attention_mask']).unsqueeze(0))
max_index=torch.argmax(torch.tensor(output.logits))

if max_index==0:
    print('joy、うれしい')
elif max_index==1:
    print('sadness、悲しい')
elif max_index==2:
    print('anticipation、期待')
elif max_index==3:
    print('surprise、驚き')
elif max_index==4:
    print('anger、怒り')
elif max_index==5:
    print('fear、恐れ')
elif max_index==6:
    print('disgust、嫌悪')
elif max_index==7:
    print('trust、信頼')

Acknowledgments 謝辞

Lukeの開発者である山田先生とStudio ousiaさんには感謝いたします。 I would like to thank Mr.Yamada @ikuyamada and Studio ousia @StudioOusia.

Citation

[1]@inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} }

Downloads last month
2,818
Safetensors
Model size
414M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Mizuiro-sakura/luke-japanese-large-sentiment-analysis-wrime