Vortex
Collection
ModelCloud optimized and validated quants that pass/meet strict quality assurance on multiple benchmarks.
•
10 items
•
Updated
•
7
This model has been quantized using GPTQModel.
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
model_name = "ModelCloud/Llama-3.2-1B-Instruct-gptqmodel-4bit-vortex-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.from_quantized(model_name)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
Base model
meta-llama/Llama-3.2-1B-Instruct