Monday-Someday's picture
Model save
acf3771 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024new
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9404796301646923

beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024new

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1463
  • Accuracy: 0.9405

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2051 0.9985 486 0.1758 0.9276
0.169 1.9985 972 0.1703 0.9312
0.1572 2.9985 1458 0.1675 0.9296
0.1572 3.9985 1944 0.1472 0.9385
0.1362 4.9985 2430 0.1463 0.9405

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.7.0.dev20250117+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0