Muennighoff's picture
Update README.md
772370a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-xsum-512
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 28.8448

t5-small-finetuned-xsum-512

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4706
  • Rouge1: 28.8448
  • Rouge2: 7.9819
  • Rougel: 22.8686
  • Rougelsum: 22.8754
  • Gen Len: 18.7654

T5, zero-shot on the same evaluation set: {'rouge1': 19.2304, 'rouge2': 2.5842, 'rougeL': 13.9683, 'rougeLsum': 15.516}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.7057 1.0 7854 2.4706 28.8448 7.9819 22.8686 22.8754 18.7654

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.2
  • Datasets 2.1.0
  • Tokenizers 0.12.1