UmBERTo Commoncrawl Cased
UmBERTo is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. Now available at github.com/huggingface/transformers
Marco Lodola, Monument to Umberto Eco, Alessandria 2019
Dataset
UmBERTo-Commoncrawl-Cased utilizes the Italian subcorpus of OSCAR as training set of the language model. We used deduplicated version of the Italian corpus that consists in 70 GB of plain text data, 210M sentences with 11B words where the sentences have been filtered and shuffled at line level in order to be used for NLP research.
Pre-trained model
Model | WWM | Cased | Tokenizer | Vocab Size | Train Steps | Download |
---|---|---|---|---|---|---|
umberto-commoncrawl-cased-v1 |
YES | YES | SPM | 32K | 125k | Link |
This model was trained with SentencePiece and Whole Word Masking.
Downstream Tasks
These results refers to umberto-commoncrawl-cased model. All details are at Umberto Official Page.
Named Entity Recognition (NER)
Dataset | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|
ICAB-EvalITA07 | 87.565 | 86.596 | 88.556 | 98.690 |
WikiNER-ITA | 92.531 | 92.509 | 92.553 | 99.136 |
Part of Speech (POS)
Dataset | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|
UD_Italian-ISDT | 98.870 | 98.861 | 98.879 | 98.977 |
UD_Italian-ParTUT | 98.786 | 98.812 | 98.760 | 98.903 |
Usage
Load UmBERTo with AutoModel, Autotokenizer:
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1")
umberto = AutoModel.from_pretrained("Musixmatch/umberto-commoncrawl-cased-v1")
encoded_input = tokenizer.encode("Umberto Eco è stato un grande scrittore")
input_ids = torch.tensor(encoded_input).unsqueeze(0) # Batch size 1
outputs = umberto(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output
Predict masked token:
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="Musixmatch/umberto-commoncrawl-cased-v1",
tokenizer="Musixmatch/umberto-commoncrawl-cased-v1"
)
result = fill_mask("Umberto Eco è <mask> un grande scrittore")
# {'sequence': '<s> Umberto Eco è considerato un grande scrittore</s>', 'score': 0.18599839508533478, 'token': 5032}
# {'sequence': '<s> Umberto Eco è stato un grande scrittore</s>', 'score': 0.17816807329654694, 'token': 471}
# {'sequence': '<s> Umberto Eco è sicuramente un grande scrittore</s>', 'score': 0.16565583646297455, 'token': 2654}
# {'sequence': '<s> Umberto Eco è indubbiamente un grande scrittore</s>', 'score': 0.0932890921831131, 'token': 17908}
# {'sequence': '<s> Umberto Eco è certamente un grande scrittore</s>', 'score': 0.054701317101716995, 'token': 5269}
Citation
All of the original datasets are publicly available or were released with the owners' grant. The datasets are all released under a CC0 or CCBY license.
- UD Italian-ISDT Dataset Github
- UD Italian-ParTUT Dataset Github
- I-CAB (Italian Content Annotation Bank), EvalITA Page
- WIKINER Page , Paper
@inproceedings {magnini2006annotazione,
title = {Annotazione di contenuti concettuali in un corpus italiano: I - CAB},
author = {Magnini,Bernardo and Cappelli,Amedeo and Pianta,Emanuele and Speranza,Manuela and Bartalesi Lenzi,V and Sprugnoli,Rachele and Romano,Lorenza and Girardi,Christian and Negri,Matteo},
booktitle = {Proc.of SILFI 2006},
year = {2006}
}
@inproceedings {magnini2006cab,
title = {I - CAB: the Italian Content Annotation Bank.},
author = {Magnini,Bernardo and Pianta,Emanuele and Girardi,Christian and Negri,Matteo and Romano,Lorenza and Speranza,Manuela and Lenzi,Valentina Bartalesi and Sprugnoli,Rachele},
booktitle = {LREC},
pages = {963--968},
year = {2006},
organization = {Citeseer}
}
Authors
Loreto Parisi: loreto at musixmatch dot com
, loretoparisi
Simone Francia: simone.francia at musixmatch dot com
, simonefrancia
Paolo Magnani: paul.magnani95 at gmail dot com
, paulthemagno
About Musixmatch AI
We do Machine Learning and Artificial Intelligence @musixmatch Follow us on Twitter Github
- Downloads last month
- 12,814