YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Full notebook:
https://github.com/MustafaAlahmid/hugging_face_models/blob/main/layoutlm_funsd.ipynb
tags: - generated_from_keras_callback model-index: - name: layoutlm-funsd-tf results: []
layoutlm-funsd-tf
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0691
- Validation Loss: 0.7709
- Train Overall Precision: 0.7410
- Train Overall Recall: 0.7953
- Train Overall F1: 0.7672
- Train Overall Accuracy: 0.8057
- Epoch: 7
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
---|---|---|---|---|---|---|
1.1546 | 0.6939 | 0.6387 | 0.7381 | 0.6848 | 0.7761 | 0 |
0.6170 | 0.5872 | 0.7099 | 0.7832 | 0.7448 | 0.7949 | 1 |
0.4005 | 0.6761 | 0.6766 | 0.7777 | 0.7236 | 0.7729 | 2 |
0.2921 | 0.6447 | 0.7169 | 0.7852 | 0.7495 | 0.7934 | 3 |
0.2029 | 0.7472 | 0.7019 | 0.7953 | 0.7457 | 0.7852 | 4 |
0.1383 | 0.7195 | 0.7327 | 0.7938 | 0.7620 | 0.8048 | 5 |
0.0932 | 0.7851 | 0.7272 | 0.7998 | 0.7618 | 0.8063 | 6 |
0.0691 | 0.7709 | 0.7410 | 0.7953 | 0.7672 | 0.8057 | 7 |
Framework versions
- Transformers 4.26.0
- TensorFlow 2.10.0
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.