NTQ AI LM
Collection
A collection of finely tuned Language Models (LLMs) across diverse datasets.
โข
3 items
โข
Updated
โข
2
This is a 7B-parameter decoder-only Japanese language model fine-tuned on our instruction-following datasets, built on top of the base model Japanese Stable LM Base Gamma 7B.
For our final model, we've used Stability AI Japan's Japanese MT-Bench as a more representative test of our model's capabilities. For our JA MT-Bench testing we use a Japanese prompt ("ใใชใใฏๅฝน็ซใคใขใทในใฟใณใใงใใ") as well as --num-choices 4
:
Benchmark | Score |
---|---|
JA MT-Bench | 6.65 |
There is an JA-MT-Bench Leaderboard, for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by gpt-4-0613
):
Model | Score |
---|---|
gpt-4-0613 | 9.40 |
gpt-4-1106-preview | 9.17 |
gpt-3.5-turbo* | 8.41 |
Qwen-72B-Chat | 7.97 |
Qwen-14B-Chat | 7.47 |
chatntq-ja-7b-v1.0 | 6.65 |
Xwin-LM-70B-V0.1-GPTQ (q4-gs32-actorder) | 6.62 |
shisa-gamma-7b-v1 | 6.12 |
nekomata-14b-instruction (corrected prompt HF) | 5.57 |
shisa-7B-v1-GPTQ (q4-gs32-actorder) | 5.35 |
nekomata-14b-instruction (corrected prompt) | 5.30 |
shisa-mega-7b-v1.2 | 5.27 |
shisa-7b-v1 (full prompt) | 5.23 |
Swallow-13b-instruct-hf | 5.17 |
Swallow-70b-instruct-GPTQ (q4-gs32-actorder) | 5.15 |
shisa-7b-v1 | 5.02 |
shisa-7B-v1-AWQ (q4-gs128) | 4.78 |
ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 |
shisa-bad-7b-v1 | 4.42 |
Swallow-7b-instruct-hf | 4.21 |
ja-stablelm-instruct-gamma-7b* | 4.01 |
japanese-stablelm-instruct-alpha-7b* | 2.74 |
Mistral-7B-OpenOrca-ja* | 2.23 |
youri-7b-chat* | 2.00 |
Mistral-7B-Instruct-v0.1* | 1.78 |
llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 |
houou-instruction-7b-v1 | 1.02 |
llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0 | 1.0 |
llm-jp-13b-instruct-full-jaster-v1.0 | 1.0 |
Ensure you are using Transformers 4.34.0 or newer.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NTQAI/chatntq-ja-7b-v1.0")
model = AutoModelForCausalLM.from_pretrained(
"NTQAI/chatntq-ja-7b-v1.0",
torch_dtype="auto",
)
model.eval()
if torch.cuda.is_available():
model = model.to("cuda")
def build_prompt(user_query):
sys_msg = "ใใชใใฏๅ
ฌๅนณใงใๆค้ฒใใใฆใใชใใๅฝน็ซใคใขใทในใฟใณใใงใใ"
template = """[INST] <<SYS>>
{}
<</SYS>>
{}[/INST]"""
return template.format(sys_msg,user_query)
# Infer with prompt without any additional input
user_inputs = {
"user_query": "ไธใใใใใใจใใใฎๆๅณใๅฐๅญฆ็ใงใๅใใใใใซๆใใฆใใ ใใใ",
}
prompt = build_prompt(**user_inputs)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=True,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=256,
temperature=1,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
For details, please see Mistral AI's paper and release blog post.