ChatNTQ JA 7B V1.0

Model Description

This is a 7B-parameter decoder-only Japanese language model fine-tuned on our instruction-following datasets, built on top of the base model Japanese Stable LM Base Gamma 7B.

Performance

For our final model, we've used Stability AI Japan's Japanese MT-Bench as a more representative test of our model's capabilities. For our JA MT-Bench testing we use a Japanese prompt ("ใ‚ใชใŸใฏๅฝน็ซ‹ใคใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚") as well as --num-choices 4:

Benchmark Score
JA MT-Bench 6.65

There is an JA-MT-Bench Leaderboard, for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by gpt-4-0613):

Model Score
gpt-4-0613 9.40
gpt-4-1106-preview 9.17
gpt-3.5-turbo* 8.41
Qwen-72B-Chat 7.97
Qwen-14B-Chat 7.47
chatntq-ja-7b-v1.0 6.65
Xwin-LM-70B-V0.1-GPTQ (q4-gs32-actorder) 6.62
shisa-gamma-7b-v1 6.12
nekomata-14b-instruction (corrected prompt HF) 5.57
shisa-7B-v1-GPTQ (q4-gs32-actorder) 5.35
nekomata-14b-instruction (corrected prompt) 5.30
shisa-mega-7b-v1.2 5.27
shisa-7b-v1 (full prompt) 5.23
Swallow-13b-instruct-hf 5.17
Swallow-70b-instruct-GPTQ (q4-gs32-actorder) 5.15
shisa-7b-v1 5.02
shisa-7B-v1-AWQ (q4-gs128) 4.78
ELYZA-japanese-Llama-2-7b-fast-instruct* 4.86
shisa-bad-7b-v1 4.42
Swallow-7b-instruct-hf 4.21
ja-stablelm-instruct-gamma-7b* 4.01
japanese-stablelm-instruct-alpha-7b* 2.74
Mistral-7B-OpenOrca-ja* 2.23
youri-7b-chat* 2.00
Mistral-7B-Instruct-v0.1* 1.78
llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* 1.31
houou-instruction-7b-v1 1.02
llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0 1.0
llm-jp-13b-instruct-full-jaster-v1.0 1.0

More Analysis

image/png

Usage

Ensure you are using Transformers 4.34.0 or newer.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("NTQAI/chatntq-ja-7b-v1.0")
model = AutoModelForCausalLM.from_pretrained(
  "NTQAI/chatntq-ja-7b-v1.0",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

def build_prompt(user_query):
    sys_msg = "ใ‚ใชใŸใฏๅ…ฌๅนณใงใ€ๆคœ้–ฒใ•ใ‚Œใฆใ„ใชใ„ใ€ๅฝน็ซ‹ใคใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€‚"
    template = """[INST] <<SYS>>
{}
<</SYS>>

{}[/INST]"""
    return template.format(sys_msg,user_query)

# Infer with prompt without any additional input
user_inputs = {
    "user_query": "ไธŽใˆใ‚‰ใ‚ŒใŸใ“ใจใ‚ใ–ใฎๆ„ๅ‘ณใ‚’ๅฐๅญฆ็”Ÿใงใ‚‚ๅˆ†ใ‹ใ‚‹ใ‚ˆใ†ใซๆ•™ใˆใฆใใ ใ•ใ„ใ€‚",
}
prompt = build_prompt(**user_inputs)

input_ids = tokenizer.encode(
    prompt, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=256,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)

Model Details

Model Architecture

For details, please see Mistral AI's paper and release blog post.

Downloads last month
54
Safetensors
Model size
7.24B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for NTQAI/chatntq-ja-7b-v1.0

Merges
10 models
Quantizations
1 model

Spaces using NTQAI/chatntq-ja-7b-v1.0 6

Collection including NTQAI/chatntq-ja-7b-v1.0