PULI GPTrio (7.67B billion parameter)
For further details read our paper or testing our instruct model, see our demo site.
- Hungarian-English-Chinese trilingual GPT-NeoX model (7.67B billion parameter)
- Trained with EleutherAI's GPT-NeoX github
- Checkpoint: 410 000 steps
Dataset
- Hungarian: 41.5 billion words (314 GB)
- English: 61.9 billion words (391 GB)
- Github: 6 million documents (33 GB)
- Chinese: 98.7 billion Chinese character (340 GB)
- (12 billion non Chinese token)
Limitations
- max_seq_length = 2048
- float16
- vocab size: 150 016
Citation
If you use this model, please cite the following paper:
@inproceedings {yang-puli-gptrio,
title = {Mono- and multilingual GPT-3 models for Hungarian},
booktitle = {Text, Speech, and Dialogue},
year = {2023},
publisher = {Springer Nature Switzerland},
series = {Lecture Notes in Computer Science},
address = {Plzeň, Czech Republic},
author = {Yang, Zijian Győző and Laki, László János and Váradi, Tamás and Prószéky, Gábor},
pages = {94--104},
isbn = {978-3-031-40498-6}
}
Usage
from transformers import GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(
input_ids,
do_sample=True,
temperature=0.9,
max_length=100,
)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print(gen_text)
Usage with pipeline
from transformers import pipeline, GPTNeoXForCausalLM, AutoTokenizer
model = GPTNeoXForCausalLM.from_pretrained("NYTK/PULI-GPTrio")
tokenizer = AutoTokenizer.from_pretrained("NYTK/PULI-GPTrio")
prompt = "Elmesélek egy történetet a nyelvtechnológiáról."
generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
print(generator(prompt)[0]["generated_text"])
- Downloads last month
- 823
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.