Hungarian morphological generator model with mT5
For further models, scripts and details, see our demo site.
- Pretrained model used: mT5
- Prefix: "morph: "
- UD-based generation
Limitations
- max_source_length = 64
- max_target_length = 32
Results
Model | emMorph | UD |
---|---|---|
mT5 | 95.53 | 94.66 |
Usage with pipeline
from transformers import pipeline
text2text_generator = pipeline(task="text2text-generation", model="NYTK/morphological-generator-ud-mt5-hungarian")
print(text2text_generator("morph: munka NOUN Case=Acc|Number=Sin")[0]["generated_text"])
Citation
If you use this model, please cite the following paper:
@inproceedings {morph-generator,
title = {Neural Morphological Generators for Hungarian},
booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
year = {2023},
publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
address = {Szeged, Hungary},
author = {Laki, László János and Ligeti-Nagy, Noémi and Vadász, Noémi and Yang, Zijian Győző},
pages = {331--340}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.