Hungarian morphological generator model with mT5

For further models, scripts and details, see our demo site.

  • Pretrained model used: mT5
  • Prefix: "morph: "
  • UD-based generation

Limitations

  • max_source_length = 64
  • max_target_length = 32

Results

Model emMorph UD
mT5 95.53 94.66

Usage with pipeline

from transformers import pipeline

text2text_generator = pipeline(task="text2text-generation", model="NYTK/morphological-generator-ud-mt5-hungarian")

print(text2text_generator("morph: munka NOUN Case=Acc|Number=Sin")[0]["generated_text"])

Citation

If you use this model, please cite the following paper:

@inproceedings {morph-generator,
    title = {Neural Morphological Generators for Hungarian},
    booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)},
    year = {2023},
    publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
    address = {Szeged, Hungary},
    author = {Laki, László János and Ligeti-Nagy, Noémi and Vadász, Noémi and Yang, Zijian Győző},
    pages = {331--340}
}
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.