NanQiangHF's picture
NanQiangHF/llama3.1_8b_dpo_bwgenerator_test
3a191ca verified
metadata
license: llama3.1
library_name: peft
tags:
  - trl
  - dpo
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
  - name: llama3.1_8b_dpo_bwgenerator_test
    results: []

llama3.1_8b_dpo_bwgenerator_test

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0381
  • Rewards/chosen: -9.3770
  • Rewards/rejected: -40.9760
  • Rewards/accuracies: 0.9961
  • Rewards/margins: 31.5990
  • Logps/rejected: -519.9075
  • Logps/chosen: -178.3189
  • Logits/rejected: -1.4901
  • Logits/chosen: -1.9907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0864 0.0719 1000 0.1031 -24.3451 -55.7071 0.9919 31.3620 -667.2187 -328.0001 -1.3920 -1.9101
0.0721 0.1438 2000 0.0666 -17.1956 -43.6489 0.9932 26.4533 -546.6367 -256.5046 -1.3146 -1.8819
0.0513 0.2157 3000 0.0586 -13.4148 -39.7394 0.9932 26.3247 -507.5419 -218.6962 -1.5754 -2.0549
0.0391 0.2876 4000 0.0518 -11.9859 -42.5627 0.9942 30.5768 -535.7746 -204.4073 -1.5376 -2.0293
0.0431 0.3595 5000 0.0584 -15.0281 -51.9022 0.9945 36.8741 -629.1698 -234.8300 -1.5020 -2.0037
0.0386 0.4313 6000 0.0399 -10.5384 -39.9545 0.9961 29.4161 -509.6927 -189.9328 -1.5356 -2.0315
0.0417 0.5032 7000 0.0452 -11.8813 -46.2602 0.9955 34.3789 -572.7493 -203.3616 -1.4399 -1.9551
0.06 0.5751 8000 0.0387 -9.4865 -39.5614 0.9958 30.0749 -505.7617 -179.4136 -1.5289 -2.0209
0.0478 0.6470 9000 0.0376 -9.9444 -40.6988 0.9961 30.7544 -517.1356 -183.9923 -1.5154 -2.0106
0.022 0.7189 10000 0.0399 -9.6813 -41.9896 0.9961 32.3084 -530.0439 -181.3615 -1.4896 -1.9912
0.0254 0.7908 11000 0.0378 -9.1448 -40.6698 0.9961 31.5250 -516.8457 -175.9964 -1.5031 -2.0023
0.0357 0.8627 12000 0.0387 -9.6321 -41.6962 0.9961 32.0641 -527.1096 -180.8692 -1.4851 -1.9878
0.0626 0.9346 13000 0.0381 -9.3770 -40.9760 0.9961 31.5990 -519.9075 -178.3189 -1.4901 -1.9907

Framework versions

  • PEFT 0.10.0
  • Transformers 4.44.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.19.1