This is just a Test Model. Do NOT use for anything!
Continued pretrained from the nb-roberta-base.
The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian].
Train for 180k steps for 128 sequences:
./run_mlm_flax_stream.py \
--output_dir="./" \
--model_type="roberta" \
--config_name="./" \
--tokenizer_name="./" \
--model_name_or_path="./" \
--dataset_name="NbAiLab/scandinavian" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="6e-5" \
--warmup_steps="5000" \
--overwrite_output_dir \
--cache_dir /mnt/disks/flaxdisk/cache/ \
--num_train_steps="180000" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="10000" \
--save_steps="10000" \
--eval_steps="10000" \
--preprocessing_num_workers 96 \
--auth_token True \
--adafactor \
--push_to_hub
Train for 20k steps for 512 sequences:
./run_mlm_flax_stream.py \
--output_dir="./" \
--model_type="roberta" \
--config_name="./" \
--tokenizer_name="./" \
--model_name_or_path="./" \
--dataset_name="NbAiLab/scandinavian" \
--max_seq_length="512" \
--weight_decay="0.01" \
--per_device_train_batch_size="48" \
--per_device_eval_batch_size="48" \
--learning_rate="3e-5" \
--warmup_steps="5000" \
--overwrite_output_dir \
--cache_dir /mnt/disks/flaxdisk/cache/ \
--num_train_steps="20000" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="20000" \
--save_steps="10000" \
--eval_steps="10000" \
--preprocessing_num_workers 96 \
--auth_token True \
--adafactor \
--push_to_hub
Approximate additional training time: 1 week.
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.