File size: 9,529 Bytes
71db8c1
 
 
 
 
 
5be1621
 
826bc2c
5be1621
826bc2c
5be1621
 
 
 
 
234247c
5be1621
 
 
 
 
928124d
5be1621
 
 
 
56ae460
8072917
 
71db8c1
 
fc0e05a
 
71db8c1
011fb39
71db8c1
2019653
 
011fb39
2019653
 
71db8c1
 
 
 
 
 
66611d8
 
71db8c1
fc0e05a
71db8c1
 
2b630a2
66611d8
 
 
 
 
 
 
 
 
 
2b630a2
71db8c1
 
 
2019653
011fb39
71db8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
66611d8
71db8c1
 
fc0e05a
 
71db8c1
 
 
 
 
 
 
 
 
66611d8
 
 
 
 
 
 
 
 
 
71db8c1
 
06a2e17
fc0e05a
06a2e17
 
 
 
 
 
 
 
 
 
 
 
fc0e05a
06a2e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0e05a
06a2e17
 
fc0e05a
06a2e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0e05a
06a2e17
 
 
 
 
 
 
 
 
 
71db8c1
15002e3
efc084c
 
f419068
 
 
 
 
 
 
 
71db8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2fad6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets: NbAiLab/mnli-norwegian
pipeline_tag: sentence-similarity
widget:
- source_sentence: This is a Norwegian boy
  sentences:
  - Dette er en norsk gutt
  - This is an English boy
  - This is a dog
  example_title: Cross Language
- source_sentence: Det er noen dyr utenfor vinduet
  sentences:
  -  utsiden kan jeg høre noen hunder
  - Noen mennesker prater utenfor vinduet
  - Alle burde ha kjæledyr
  example_title: Paraphrases
- source_sentence: En kvinne sitter i en stol
  sentences:
  - A woman is sitting in a chair
  - Hun slapper av og leser i en bok
  - Hun løper maraton
  example_title: Paraphrases across language
license: apache-2.0
language:
- 'no'
---

# NB-SBERT-BASE
NB-SBERT-BASE is a [SentenceTransformers](https://www.SBERT.net) model trained on a [machine translated version of the MNLI dataset](https://huggingface.co/datasets/NbAiLab/mnli-norwegian), starting from [nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base). 

The model maps sentences & paragraphs to a 768 dimensional dense vector space. This vector can be used for tasks like clustering and semantic search. Below we give some examples on how to use the model. The easiest way is to simply measure the cosine distance between two sentences. Sentences that are close to each other in meaning, will have a small cosine distance and a similarity close to 1. The model is trained in such a way that similar sentences in different languages should also be close to each other. Ideally, an English-Norwegian sentence pair should have high similarity.

## Embeddings and Sentence Similarity (Sentence-Transformers)

As seen above, using the library [sentence-transformers](https://www.SBERT.net) makes the use of these models quite convenient:

```bash
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer, util
sentences = ["This is a Norwegian boy", "Dette er en norsk gutt"]

model = SentenceTransformer('NbAiLab/nb-sbert-base')
embeddings = model.encode(sentences)
print(embeddings)

# Compute cosine-similarities with sentence transformers
cosine_scores = util.cos_sim(embeddings[0],embeddings[1])
print(cosine_scores)

# Compute cosine-similarities with SciPy
from scipy import spatial
scipy_cosine_scores = 1 - spatial.distance.cosine(embeddings[0],embeddings[1])
print(scipy_cosine_scores)

# Both should give 0.8250 in the example above.

```


## Embeddings and Sentence Similarity (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can still use the model. First, you pass in your input through the transformer model, then you have to apply the right pooling-operation on top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["This is a Norwegian boy", "Dette er en norsk gutt"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('NbAiLab/nb-sbert-base')
model = AutoModel.from_pretrained('NbAiLab/nb-sbert-base')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print(embeddings)

# Compute cosine-similarities with SciPy
from scipy import spatial
scipy_cosine_scores = 1 - spatial.distance.cosine(embeddings[0],embeddings[1])
print(scipy_cosine_scores)

# This should give 0.8250 in the example above.

```
## SetFit - Few Shot Classification
[SetFit](https://github.com/huggingface/setfit) is a method for using sentence-transformers to solve one of major problem that all NLP researchers are facing: Too few labeled training examples. The 'nb-sbert-base' can be plugged directly into the SetFit library. Please see [this tutorial](https://huggingface.co/blog/setfit) for how to use this technique.


## Keyword Extraction
The model can be used for extracting keywords from text. The basic technique is to find the words that are most similar to the document. There are various frameworks for doing this. An easy way is to use [KeyBERT](https://github.com/MaartenGr/KeyBERT). This example shows how this can be done.

```bash
pip install keybert
```

```python
from keybert import KeyBERT
from sentence_transformers import SentenceTransformer
sentence_model = SentenceTransformer("NbAiLab/nb-sbert-base")
kw_model = KeyBERT(model=sentence_model)

doc = """
De første nasjonale bibliotek har sin opprinnelse i kongelige samlinger eller en annen framstående myndighet eller statsoverhode. 
Et av de første planene for et nasjonalbibliotek i England ble fremmet av den walisiske matematikeren og mystikeren John Dee som 
i 1556 presenterte en visjonær plan om et nasjonalt bibliotek for gamle bøker, manuskripter og opptegnelser for dronning Maria I 
av England. Hans forslag ble ikke tatt til følge.
"""
kw_model.extract_keywords(doc, stop_words=None)

# [('nasjonalbibliotek', 0.5242), ('bibliotek', 0.4342), ('samlinger', 0.3334), ('statsoverhode', 0.33), ('manuskripter', 0.3061)]
```

The [KeyBERT homepage](https://github.com/MaartenGr/KeyBERT) provides other several interesting examples: combining KeyBERT with stop words, extracting longer phrases, or directly producing highlighted text.

## Topic Modeling
To analyse a group of documents and determine the topics, has a lot of use cases. [BERTopic](https://github.com/MaartenGr/BERTopic) combines the power of sentence transformers with c-TF-IDF to create clusters for easily interpretable topics.

It would take too much time to explain topic modeling here. Instead we recommend that you take a look at the link above, as well as the [documentation](https://maartengr.github.io/BERTopic/index.html). The main adaptation you would need to do to use the Norwegian nb-sbert-base, is to add the following:

```python
topic_model = BERTopic(embedding_model='NbAiLab/nb-sbert-base').fit(docs)
```

## Similarity Search
Another common use case for a SentenceTransformers model is to find relevant documents or passages of documents given a certain query text. In this scenario, it is pretty common to have a vector database that stores the embedding vectors for all our documents. Then, at runtime, an embedding for the query text is generated and compared efficiently against the vector database.

While production vector databases exist, a quick way to experiment with them is by using [`autofaiss`](https://github.com/criteo/autofaiss):

```bash
pip install autofaiss sentence-transformers
```

```python
from autofaiss import build_index
import numpy as np

from sentence_transformers import SentenceTransformer, util
sentences = ["This is a Norwegian boy", "Dette er en norsk gutt", "A red house"]

model = SentenceTransformer('NbAiLab/nb-sbert-base')
embeddings = model.encode(sentences)
index, index_infos = build_index(embeddings, save_on_disk=False)

# Search for the closest matches
query = model.encode(["A young boy"])
_, index_matches = index.search(query, 1)
print(index_matches)
```




# Evaluation and Parameters

## Evaluation
Evaluation results on the sts-test dataset:
|                        | Pearson    | Spearman   |
|------------------------|------------|------------|
| Cosine Similarity      | **0.8275** | **0.8245** |
| Manhattan Distance     | 0.8193     | 0.8182     |
| Euclidean Distance     | 0.8190     | 0.8180     |
| Dot Product Similarity | 0.8039     | 0.7951     |

## Training
The model was trained with the parameters:

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 16471 with parameters:
```
{'batch_size': 32}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 1,
    "evaluation_steps": 1647,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1648,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors
The model was trained by Rolv-Arild Braaten and Per Egil Kummervold. Documentation written by Javier de la Rosa, Rov-Arild Braaten and Per Egil Kummervold.