See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 425c6bf4bb96a710_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/425c6bf4bb96a710_train_data.json
type:
field_input: paragraph
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: Nexspear/2453e11c-1506-4485-a4fd-b29c0185bb57
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/425c6bf4bb96a710_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 832d80d5-251c-46fe-b13b-7cc0427dac5a
wandb_project: Gradients-On-Four
wandb_run: your_name
wandb_runid: 832d80d5-251c-46fe-b13b-7cc0427dac5a
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
2453e11c-1506-4485-a4fd-b29c0185bb57
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1608
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0052 | 1 | 4.9409 |
5.2272 | 0.0466 | 9 | 4.8344 |
4.4814 | 0.0931 | 18 | 4.3345 |
3.3043 | 0.1397 | 27 | 3.8139 |
3.7606 | 0.1863 | 36 | 3.3687 |
2.1562 | 0.2329 | 45 | 2.9507 |
2.9386 | 0.2794 | 54 | 2.5972 |
2.4696 | 0.3260 | 63 | 2.3809 |
2.0397 | 0.3726 | 72 | 2.2495 |
1.8449 | 0.4191 | 81 | 2.1891 |
2.1496 | 0.4657 | 90 | 2.1661 |
2.2016 | 0.5123 | 99 | 2.1608 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Nexspear/2453e11c-1506-4485-a4fd-b29c0185bb57
Base model
JackFram/llama-68m