SeaLLM-7B-v2.5 - Large Language Models for Southeast Asia

Website    馃 Tech Memo    馃 DEMO    Github    Technical Report

馃敟[HOT] SeaLLMs project now has a dedicated website - damo-nlp-sg.github.io/SeaLLMs

We introduce SeaLLM-7B-v2.5, the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 馃嚞馃嚙 馃嚚馃嚦 馃嚮馃嚦 馃嚠馃嚛 馃嚬馃嚟 馃嚥馃嚲 馃嚢馃嚟 馃嚤馃嚘 馃嚥馃嚥 馃嚨馃嚟. It is the most significant upgrade since SeaLLM-13B, with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.

Highlights

  • SeaLLM-7B-v2.5 outperforms GPT-3.5 and achieves 7B SOTA on most multilingual knowledge benchmarks for SEA languages (MMLU, M3Exam & VMLU).
  • It achieves 79.0 and 34.9 on GSM8K and MATH, surpassing GPT-3.5 in MATH.

Release and DEMO

Terms of Use and License: By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our SeaLLMs Terms Of Use.

Disclaimer: We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation. Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.

The logo was generated by DALL-E 3.

What's new since SeaLLM-7B-v2?

  • SeaLLM-7B-v2.5 was built on top of Gemma-7b, and underwent large scale SFT and carefully designed alignment.

Evaluation

Multilingual World Knowledge

We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot M3Exam (M3e) for En, Zh, Vi, Id, Th, and zero-shot VMLU for Vi.

Model Langs En
MMLU
En
M3e
Zh
M3e
Vi
M3e
Vi
VMLU
Id
M3e
Th
M3e
GPT-3.5 Multi 68.90 75.46 60.20 58.64 46.32 49.27 37.41
Vistral-7B-chat Mono 56.86 67.00 44.56 54.33 50.03 36.49 25.27
Qwen1.5-7B-chat Multi 61.00 52.07 81.96 43.38 45.02 24.29 20.25
SailorLM Multi 52.72 59.76 67.74 50.14 --- 39.53 37.73
SeaLLM-7B-v2 Multi 61.89 70.91 55.43 51.15 45.74 42.25 35.52
SeaLLM-7B-v2.5 Multi 64.05 76.87 62.54 63.11 53.30 48.64 46.86

Zero-shot CoT Multilingual Math Reasoning

Model GSM8K
en
MATH
en
GSM8K
zh
MATH
zh
GSM8K
vi
MATH
vi
GSM8K
id
MATH
id
GSM8K
th
MATH
th
GPT-3.5 80.8 34.1 48.2 21.5 55 26.5 64.3 26.4 35.8 18.1
Qwen-14B-chat 61.4 18.4 41.6 11.8 33.6 3.6 44.7 8.6 22 6.0
Vistral-7b-chat 48.2 12.5 48.7 3.1
Qwen1.5-7B-chat 56.8 15.3 40.0 2.7 37.7 9 36.9 7.7 21.9 4.7
SeaLLM-7B-v2 78.2 27.5 53.7 17.6 69.9 23.8 71.5 24.4 59.6 22.4
SeaLLM-7B-v2.5 78.5 34.9 51.3 22.1 72.3 30.2 71.5 30.1 62.0 28.4

Baselines were evaluated using their respective chat-template and system prompts (Qwen1.5-7B-chat, Vistral).

Zero-shot MGSM

SeaLLM-7B-v2.5 also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Thai.

Model MGSM-Zh MGSM-Th
ChatGPT (reported) 61.2 47.2
Qwen-14B-chat 59.6 28
SeaLLM-7B-v2 64.8 62.4
SeaLLM-7B-v2.5 58.0 64.8

Sea-Bench

fig_sea_bench_side_by_side.png

Usage

IMPORTANT NOTICE for using the model

  • <bos> must be at start of prompt, ff your code's tokenizer does not prepend <bos> by default, you MUST prepend into the prompt yourself, otherwise, it would not work!
  • Repitition penalty (e.g: in llama.cpp, ollama, LM-studio) must be set to 1 , otherwise will lead to degeneration!

Instruction format

# ! WARNING, if your code's tokenizer does not prepend <bos> by default,
# You MUST prepend <bos> into the prompt yourself, otherwise, it would not work!

prompt = """<|im_start|>system
You are a helpful assistant.<eos>
<|im_start|>user
Hello world<eos>
<|im_start|>assistant
Hi there, how can I help?<eos>"""

# <|im_start|> is not a special token.
# Transformers chat_template should be consistent with vLLM format below.

# ! ENSURE 1 and only 1 bos `<bos>` at the beginning of sequence
print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))

"""

Using transformers's chat_template

Install the latest transformers (>4.40)


from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

# use bfloat16 to ensure the best performance.
model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2.5", torch_dtype=torch.bfloat16, device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2.5")

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello world"},
    {"role": "assistant", "content": "Hi there, how can I help you today?"},
    {"role": "user", "content": "Explain general relativity in details."}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
print(tokenizer.convert_ids_to_tokens(encodeds[0]))

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Using vLLM

from vllm import LLM, SamplingParams
TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n"
TURN_PREFIX = "<|im_start|>{role}\n"

def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
    # conversations: list of dict with key `role` and `content` (openai format)
    if conversations[0]['role'] != 'system' and system_prompt is not None:
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    text = ''
    for turn_id, turn in enumerate(conversations):
        prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
        text += prompt
    if add_assistant_prefix:
        prompt = TURN_PREFIX.format(role='assistant')
        text += prompt    
    return text

sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['<eos>', '<|im_start|>'])
llm = LLM("SeaLLMs/SeaLLM-7B-v2.5", dtype="bfloat16")

message = "Explain general relativity in details."
prompt = seallm_chat_convo_format(message, True)
gen = llm.generate(prompt, sampling_params)

print(gen[0].outputs[0].text)

Fine-tuning SeaLLM-7B-v2.5

Should follow the chat format and accurately mask out source tokens. Here is an example.

conversations = [
    {"role": "system", "content": "You are helful assistant."},
    {"role": "user", "content": "Hello world."},
    {"role": "assistant", "content": "Hi there, how can I help?"},
    {"role": "user", "content": "Tell me a joke."},
    {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
]
def seallm_7b_v25_tokenize_multi_turns(tokenizer, conversations, add_assistant_prefix=False):
    """
    Inputs:
        conversations: list of dict following openai format, eg
            conversations = [
                {"role": "system", "content": "You are helful assistant."},
                {"role": "user", "content": "Hello world."},
                {"role": "assistant", "content": "Hi there, how can I help?"},
                {"role": "user", "content": "Tell me a joke."},
                {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
            ]
        add_assistant_prefix: whether to add assistant_prefix, only for inference decoding
    Outputs:
        tokenize_output_sample, {
            "input_ids": ...
            "token_type_ids": 1 if train and 0 if masked out (not train)
        }
    During training, need to create a labels, with masked-out tokens = -100 to avoid loss computations.
        labels = sample['input_ids'].clone()
        labels[sample['token_type_ids'] == 0] = -100
    """
    TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n"
    TURN_PREFIX = "<|im_start|>{role}\n"
    TURN_SUFFIX = "<eos>\n"
    TURN_SUFFIX_TAKE = "<eos>"
    sample = None
    assistant_prefix_len = None
    assistant_suffix_len = None
    for turn_id, turn in enumerate(conversations):
        prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
        turn_sample = tokenizer(
            prompt, padding=False, truncation=False, verbose=False, add_special_tokens=False,
            return_token_type_ids=True, 
        )
        if turn['role'] == 'assistant':
            if assistant_prefix_len is None:
                assistant_prefix_len = len(tokenizer.encode(TURN_PREFIX.format(role=turn['role']), add_special_tokens=False))
            if assistant_suffix_len is None:
                assistant_suffix_len = (
                    len(tokenizer.encode(TURN_SUFFIX.format(role=turn['role']), add_special_tokens=False)) - 
                    len(tokenizer.encode(TURN_SUFFIX_TAKE, add_special_tokens=False))
                )
            turn_sample['token_type_ids'][assistant_prefix_len:-assistant_suffix_len] = [1] * (len(turn_sample['input_ids']) - assistant_prefix_len - assistant_suffix_len)
        if sample is None:
            sample = turn_sample
        else:
            for k in turn_sample.keys():
                sample[k].extend(turn_sample[k])
    if add_assistant_prefix:
        assistant_prefix_sample = tokenizer(
            TURN_PREFIX.format(role="assistant"), padding=False, truncation=False, verbose=False, add_special_tokens=False,
            return_token_type_ids=True, 
        )
        for k in sample.keys():
            sample[k].extend(assistant_prefix_sample[k])
    if tokenizer.add_bos_token:
        sample['input_ids'] = [tokenizer.bos_token_id] + sample['input_ids']
        sample['attention_mask'] = [1] + sample['attention_mask']
        sample['token_type_ids'] = [sample['token_type_ids'][0]] + sample['token_type_ids']
    return sample

# ! testing
sample = seallm_7b_v25_tokenize_multi_turns(tokenizer, conversations)
tokens = tokenizer.convert_ids_to_tokens(sample['input_ids'])
pairs = [(x, y) for x, y in zip(tokens, sample['token_type_ids'])]
print(pairs)

# source and special tokens is masked out (token_type 0), only assistant with <eos> is trained (token_type 1)
# [('<bos>', 0), ('<', 0), ('|', 0), ..., ('assistant', 0), ('\n', 0), ('Hi', 1), ('鈻乼here', 1), (',', 1), ('鈻乭ow', 1), ('鈻乧an', 1), ('鈻両', 1), ('鈻乭elp', 1), ('?', 1), ('<eos>', 1), ('\n', 0), ('<', 0), ... 

Acknowledgement to Our Linguists

We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.

Citation

If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [email protected]

Author list and order will change!

  • * and ^ are equal contributions.
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan,
            Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
            Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
            Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
  Eprint = {arXiv:2312.00738},
}
Downloads last month
28
Safetensors
Model size
1.82B params
Tensor type
I32
BF16
FP16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.