|
auto_scale_lr = dict(base_batch_size=16) |
|
backend_args = None |
|
data_root = '/kaggle/working/mmdetection/dataset/' |
|
dataset_type = 'CocoDataset' |
|
default_hooks = dict( |
|
checkpoint=dict(interval=1, type='CheckpointHook'), |
|
logger=dict(interval=50, type='LoggerHook'), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
timer=dict(type='IterTimerHook'), |
|
visualization=dict(type='DetVisualizationHook')) |
|
default_scope = 'mmdet' |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
launcher = 'none' |
|
load_from = '/kaggle/working/mmdetection/work_dirs/dino-4scale_resnet50_8xb2-12e_coco/epoch_6.pth' |
|
log_level = 'INFO' |
|
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=50) |
|
max_epochs = 12 |
|
metainfo = dict(classes=[ |
|
'000_aveda_shampoo', |
|
'001_binder_clips_median', |
|
'002_binder_clips_small', |
|
'003_bombik_bucket', |
|
'004_bonne_maman_blueberry', |
|
'005_bonne_maman_raspberry', |
|
'006_bonne_maman_strawberry', |
|
'007_costa_caramel', |
|
'008_essential_oil_bergamot', |
|
'009_garlic_toast_spread', |
|
'010_handcream_avocado', |
|
'011_hb_calcium', |
|
'012_hb_grapeseed', |
|
'013_hb_marine_collagen', |
|
'014_hellmanns_mayonnaise', |
|
'015_illy_blend', |
|
'016_japanese_finger_cookies', |
|
'017_john_west_canned_tuna', |
|
'018_kerastase_shampoo', |
|
'019_kiehls_facial_cream', |
|
'020_kiihne_balsamic', |
|
'021_kiihne_honey_mustard', |
|
'022_lindor_matcha', |
|
'023_lindor_salted_caramel', |
|
'024_lush_mask', |
|
'025_pasta_sauce_black_pepper', |
|
'026_pasta_sauce_tomato', |
|
'027_pepsi', |
|
'028_portable_yogurt_machine', |
|
'029_selfile_stick', |
|
'030_sour_lemon_drops', |
|
'031_sticky_notes', |
|
'032_stridex_green', |
|
'033_thermos_flask_cream', |
|
'034_thermos_flask_muji', |
|
'035_thermos_flask_sliver', |
|
'036_tragata_olive_oil', |
|
'037_tulip_luncheon_meat', |
|
'038_unicharm_cotton_pad', |
|
'039_vinda_tissue', |
|
'040_wrigley_doublemint_gum', |
|
'041_baseball_cap_black', |
|
'042_baseball_cap_pink', |
|
'043_bfe_facial_mask', |
|
'044_corgi_doll', |
|
'045_dinosaur_doll', |
|
'046_geo_mocha', |
|
'047_geo_roast_charcoal', |
|
'048_instant_noodle_black', |
|
'049_instant_noodle_red', |
|
'050_nabati_cheese_wafer', |
|
'051_truffettes', |
|
'052_acnes_cream', |
|
'053_aveda_conditioner', |
|
'054_banana_milk_drink', |
|
'055_candle_beast', |
|
'056_china_persimmon', |
|
'057_danisa_butter_cookies', |
|
'058_effaclar_duo', |
|
'059_evelom_cleanser', |
|
'060_glasses_box_blone', |
|
'061_handcream_iris', |
|
'062_handcream_lavender', |
|
'063_handcream_rosewater', |
|
'064_handcream_summer_hill', |
|
'065_hr_serum', |
|
'066_japanese_chocolate', |
|
'067_kerastase_hair_treatment', |
|
'068_kiehls_serum', |
|
'069_korean_beef_marinade', |
|
'070_korean_doenjang', |
|
'071_korean_gochujang', |
|
'072_korean_ssamjang', |
|
'073_loccitane_soap', |
|
'074_marvis_toothpaste_purple', |
|
'075_mouse_thinkpad', |
|
'076_oatly_chocolate', |
|
'077_oatly_original', |
|
'078_ousa_grated_cheese', |
|
'079_polaroid_film', |
|
'080_skinceuticals_be', |
|
'081_skinceuticals_cf', |
|
'082_skinceuticals_phyto', |
|
'083_stapler_black', |
|
'084_stapler_blue', |
|
'085_sunscreen_blue', |
|
'086_tempo_pocket_tissue', |
|
'087_thermos_flask_purple', |
|
'088_uha_matcha', |
|
'089_urban_decay_spray', |
|
'090_vitaboost_multivitamin', |
|
'091_watercolor_penbox', |
|
'092_youthlt_bilberry_complex', |
|
'093_daiso_mod_remover', |
|
'094_kaneyo_kitchen_bleach', |
|
'095_lays_chip_bag_blue', |
|
'096_lays_chip_bag_green', |
|
'097_lays_chip_tube_auburn', |
|
'098_lays_chip_tube_green', |
|
'099_mug_blue', |
|
]) |
|
model = dict( |
|
as_two_stage=True, |
|
backbone=dict( |
|
depth=50, |
|
frozen_stages=1, |
|
init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'), |
|
norm_cfg=dict(requires_grad=False, type='BN'), |
|
norm_eval=True, |
|
num_stages=4, |
|
out_indices=( |
|
0, |
|
1, |
|
2, |
|
3, |
|
), |
|
style='pytorch', |
|
type='ResNet', |
|
with_cp=True), |
|
bbox_head=dict( |
|
loss_bbox=dict(loss_weight=5.0, type='L1Loss'), |
|
loss_cls=dict( |
|
alpha=0.25, |
|
gamma=2.0, |
|
loss_weight=1.0, |
|
type='FocalLoss', |
|
use_sigmoid=True), |
|
loss_iou=dict(loss_weight=2.0, type='GIoULoss'), |
|
num_classes=100, |
|
sync_cls_avg_factor=True, |
|
type='DINOHead'), |
|
data_preprocessor=dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_size_divisor=1, |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='DetDataPreprocessor'), |
|
decoder=dict( |
|
layer_cfg=dict( |
|
cross_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4), |
|
ffn_cfg=dict( |
|
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0), |
|
self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_heads=8)), |
|
num_layers=6, |
|
post_norm_cfg=None, |
|
return_intermediate=True), |
|
dn_cfg=dict( |
|
box_noise_scale=1.0, |
|
group_cfg=dict(dynamic=True, num_dn_queries=100, num_groups=None), |
|
label_noise_scale=0.5), |
|
encoder=dict( |
|
layer_cfg=dict( |
|
ffn_cfg=dict( |
|
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0), |
|
self_attn_cfg=dict(dropout=0.0, embed_dims=256, num_levels=4)), |
|
num_layers=6), |
|
neck=dict( |
|
act_cfg=None, |
|
in_channels=[ |
|
256, |
|
512, |
|
1024, |
|
2048, |
|
], |
|
kernel_size=1, |
|
norm_cfg=dict(num_groups=32, type='GN'), |
|
num_outs=4, |
|
out_channels=256, |
|
type='ChannelMapper'), |
|
num_feature_levels=4, |
|
num_queries=900, |
|
positional_encoding=dict( |
|
normalize=True, num_feats=128, offset=0.0, temperature=20), |
|
test_cfg=dict(max_per_img=300), |
|
train_cfg=dict( |
|
assigner=dict( |
|
match_costs=[ |
|
dict(type='FocalLossCost', weight=2.0), |
|
dict(box_format='xywh', type='BBoxL1Cost', weight=5.0), |
|
dict(iou_mode='giou', type='IoUCost', weight=2.0), |
|
], |
|
type='HungarianAssigner')), |
|
type='DINO', |
|
with_box_refine=True) |
|
num_levels = 4 |
|
optim_wrapper = dict( |
|
clip_grad=dict(max_norm=0.1, norm_type=2), |
|
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.0001), |
|
paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))), |
|
type='OptimWrapper') |
|
param_scheduler = [ |
|
dict( |
|
begin=0, |
|
by_epoch=True, |
|
end=12, |
|
gamma=0.1, |
|
milestones=[ |
|
11, |
|
], |
|
type='MultiStepLR'), |
|
] |
|
resume = False |
|
test_cfg = dict(type='TestLoop') |
|
test_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
ann_file=None, |
|
backend_args=None, |
|
data_prefix=dict(img=''), |
|
data_root='/kaggle/input/insdet-test/InsDet-Test', |
|
pipeline=[ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
1333, |
|
800, |
|
), type='Resize'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
meta_keys=( |
|
'img_id', |
|
'img_path', |
|
'ori_shape', |
|
'img_shape', |
|
'scale_factor', |
|
), |
|
type='PackDetInputs'), |
|
], |
|
test_mode=True, |
|
type='CocoDataset'), |
|
drop_last=False, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
test_evaluator = dict( |
|
ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json', |
|
backend_args=None, |
|
format_only=False, |
|
metric='bbox', |
|
type='CocoMetric') |
|
test_pipeline = [ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
1333, |
|
800, |
|
), type='Resize'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
meta_keys=( |
|
'img_id', |
|
'img_path', |
|
'ori_shape', |
|
'img_shape', |
|
'scale_factor', |
|
), |
|
type='PackDetInputs'), |
|
] |
|
train_cfg = dict(max_epochs=6, type='EpochBasedTrainLoop', val_interval=1) |
|
train_dataloader = dict( |
|
batch_sampler=dict(type='AspectRatioBatchSampler'), |
|
batch_size=1, |
|
dataset=dict( |
|
ann_file='annotations/train.json', |
|
backend_args=None, |
|
data_prefix=dict(img='train/'), |
|
data_root='/kaggle/working/mmdetection/dataset/', |
|
filter_cfg=dict(filter_empty_gt=False, min_size=32), |
|
metainfo=dict(classes=[ |
|
'000_aveda_shampoo', |
|
'001_binder_clips_median', |
|
'002_binder_clips_small', |
|
'003_bombik_bucket', |
|
'004_bonne_maman_blueberry', |
|
'005_bonne_maman_raspberry', |
|
'006_bonne_maman_strawberry', |
|
'007_costa_caramel', |
|
'008_essential_oil_bergamot', |
|
'009_garlic_toast_spread', |
|
'010_handcream_avocado', |
|
'011_hb_calcium', |
|
'012_hb_grapeseed', |
|
'013_hb_marine_collagen', |
|
'014_hellmanns_mayonnaise', |
|
'015_illy_blend', |
|
'016_japanese_finger_cookies', |
|
'017_john_west_canned_tuna', |
|
'018_kerastase_shampoo', |
|
'019_kiehls_facial_cream', |
|
'020_kiihne_balsamic', |
|
'021_kiihne_honey_mustard', |
|
'022_lindor_matcha', |
|
'023_lindor_salted_caramel', |
|
'024_lush_mask', |
|
'025_pasta_sauce_black_pepper', |
|
'026_pasta_sauce_tomato', |
|
'027_pepsi', |
|
'028_portable_yogurt_machine', |
|
'029_selfile_stick', |
|
'030_sour_lemon_drops', |
|
'031_sticky_notes', |
|
'032_stridex_green', |
|
'033_thermos_flask_cream', |
|
'034_thermos_flask_muji', |
|
'035_thermos_flask_sliver', |
|
'036_tragata_olive_oil', |
|
'037_tulip_luncheon_meat', |
|
'038_unicharm_cotton_pad', |
|
'039_vinda_tissue', |
|
'040_wrigley_doublemint_gum', |
|
'041_baseball_cap_black', |
|
'042_baseball_cap_pink', |
|
'043_bfe_facial_mask', |
|
'044_corgi_doll', |
|
'045_dinosaur_doll', |
|
'046_geo_mocha', |
|
'047_geo_roast_charcoal', |
|
'048_instant_noodle_black', |
|
'049_instant_noodle_red', |
|
'050_nabati_cheese_wafer', |
|
'051_truffettes', |
|
'052_acnes_cream', |
|
'053_aveda_conditioner', |
|
'054_banana_milk_drink', |
|
'055_candle_beast', |
|
'056_china_persimmon', |
|
'057_danisa_butter_cookies', |
|
'058_effaclar_duo', |
|
'059_evelom_cleanser', |
|
'060_glasses_box_blone', |
|
'061_handcream_iris', |
|
'062_handcream_lavender', |
|
'063_handcream_rosewater', |
|
'064_handcream_summer_hill', |
|
'065_hr_serum', |
|
'066_japanese_chocolate', |
|
'067_kerastase_hair_treatment', |
|
'068_kiehls_serum', |
|
'069_korean_beef_marinade', |
|
'070_korean_doenjang', |
|
'071_korean_gochujang', |
|
'072_korean_ssamjang', |
|
'073_loccitane_soap', |
|
'074_marvis_toothpaste_purple', |
|
'075_mouse_thinkpad', |
|
'076_oatly_chocolate', |
|
'077_oatly_original', |
|
'078_ousa_grated_cheese', |
|
'079_polaroid_film', |
|
'080_skinceuticals_be', |
|
'081_skinceuticals_cf', |
|
'082_skinceuticals_phyto', |
|
'083_stapler_black', |
|
'084_stapler_blue', |
|
'085_sunscreen_blue', |
|
'086_tempo_pocket_tissue', |
|
'087_thermos_flask_purple', |
|
'088_uha_matcha', |
|
'089_urban_decay_spray', |
|
'090_vitaboost_multivitamin', |
|
'091_watercolor_penbox', |
|
'092_youthlt_bilberry_complex', |
|
'093_daiso_mod_remover', |
|
'094_kaneyo_kitchen_bleach', |
|
'095_lays_chip_bag_blue', |
|
'096_lays_chip_bag_green', |
|
'097_lays_chip_tube_auburn', |
|
'098_lays_chip_tube_green', |
|
'099_mug_blue', |
|
]), |
|
pipeline=[ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
480, |
|
1333, |
|
), |
|
( |
|
512, |
|
1333, |
|
), |
|
( |
|
544, |
|
1333, |
|
), |
|
( |
|
576, |
|
1333, |
|
), |
|
( |
|
608, |
|
1333, |
|
), |
|
( |
|
640, |
|
1333, |
|
), |
|
( |
|
672, |
|
1333, |
|
), |
|
( |
|
704, |
|
1333, |
|
), |
|
( |
|
736, |
|
1333, |
|
), |
|
( |
|
768, |
|
1333, |
|
), |
|
( |
|
800, |
|
1333, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
], |
|
[ |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
400, |
|
4200, |
|
), |
|
( |
|
500, |
|
4200, |
|
), |
|
( |
|
600, |
|
4200, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
dict( |
|
allow_negative_crop=True, |
|
crop_size=( |
|
384, |
|
600, |
|
), |
|
crop_type='absolute_range', |
|
type='RandomCrop'), |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
480, |
|
1333, |
|
), |
|
( |
|
512, |
|
1333, |
|
), |
|
( |
|
544, |
|
1333, |
|
), |
|
( |
|
576, |
|
1333, |
|
), |
|
( |
|
608, |
|
1333, |
|
), |
|
( |
|
640, |
|
1333, |
|
), |
|
( |
|
672, |
|
1333, |
|
), |
|
( |
|
704, |
|
1333, |
|
), |
|
( |
|
736, |
|
1333, |
|
), |
|
( |
|
768, |
|
1333, |
|
), |
|
( |
|
800, |
|
1333, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
], |
|
], |
|
type='RandomChoice'), |
|
dict(type='PackDetInputs'), |
|
], |
|
type='CocoDataset'), |
|
num_workers=1, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=True, type='DefaultSampler')) |
|
train_pipeline = [ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
480, |
|
1333, |
|
), |
|
( |
|
512, |
|
1333, |
|
), |
|
( |
|
544, |
|
1333, |
|
), |
|
( |
|
576, |
|
1333, |
|
), |
|
( |
|
608, |
|
1333, |
|
), |
|
( |
|
640, |
|
1333, |
|
), |
|
( |
|
672, |
|
1333, |
|
), |
|
( |
|
704, |
|
1333, |
|
), |
|
( |
|
736, |
|
1333, |
|
), |
|
( |
|
768, |
|
1333, |
|
), |
|
( |
|
800, |
|
1333, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
], |
|
[ |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
400, |
|
4200, |
|
), |
|
( |
|
500, |
|
4200, |
|
), |
|
( |
|
600, |
|
4200, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
dict( |
|
allow_negative_crop=True, |
|
crop_size=( |
|
384, |
|
600, |
|
), |
|
crop_type='absolute_range', |
|
type='RandomCrop'), |
|
dict( |
|
keep_ratio=True, |
|
scales=[ |
|
( |
|
480, |
|
1333, |
|
), |
|
( |
|
512, |
|
1333, |
|
), |
|
( |
|
544, |
|
1333, |
|
), |
|
( |
|
576, |
|
1333, |
|
), |
|
( |
|
608, |
|
1333, |
|
), |
|
( |
|
640, |
|
1333, |
|
), |
|
( |
|
672, |
|
1333, |
|
), |
|
( |
|
704, |
|
1333, |
|
), |
|
( |
|
736, |
|
1333, |
|
), |
|
( |
|
768, |
|
1333, |
|
), |
|
( |
|
800, |
|
1333, |
|
), |
|
], |
|
type='RandomChoiceResize'), |
|
], |
|
], |
|
type='RandomChoice'), |
|
dict(type='PackDetInputs'), |
|
] |
|
val_cfg = dict(type='ValLoop') |
|
val_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
ann_file='annotations/instances_val2017.json', |
|
backend_args=None, |
|
data_prefix=dict(img='val2017/'), |
|
data_root='data/coco/', |
|
pipeline=[ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
1333, |
|
800, |
|
), type='Resize'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
meta_keys=( |
|
'img_id', |
|
'img_path', |
|
'ori_shape', |
|
'img_shape', |
|
'scale_factor', |
|
), |
|
type='PackDetInputs'), |
|
], |
|
test_mode=True, |
|
type='CocoDataset'), |
|
drop_last=False, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
val_evaluator = dict( |
|
ann_file='/kaggle/working/mmdetection/dataset/annotations/val.json', |
|
backend_args=None, |
|
format_only=False, |
|
metric='bbox', |
|
type='CocoMetric') |
|
vis_backends = [ |
|
dict(type='LocalVisBackend'), |
|
] |
|
visualizer = dict( |
|
name='visualizer', |
|
type='DetLocalVisualizer', |
|
vis_backends=[ |
|
dict(type='LocalVisBackend'), |
|
]) |
|
work_dir = './work_dirs/dino-4scale_resnet50_8xb2-12e_coco' |
|
|