Text Generation
Transformers
Safetensors
mixtral
conversational
text-generation-inference
Inference Endpoints
reference-data-model:

  datasets:
    - OpenAssistant/oasst_top1_2023-08-25:
      lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
      link: https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25

  model:
    - Open-Orca/Mistral-7B-OpenOrca
      Link:
        https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca

  100 examples of generating:
    - Link:
      https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3/blob/main/output.xlsx

  Activated training with:
    - Link:
        https://huggingface.co/blog/tomaarsen/attention-sinks
        https://github.com/tomaarsen/attention_sinks
        https://arxiv.org/abs/2309.17453

  TRL:
    - Link:
        https://huggingface.co/docs/trl/index
        https://huggingface.co/docs/trl/sft_trainer

  flash-attention:
    - Link:
        https://github.com/Dao-AILab/flash-attention
        https://arxiv.org/abs/2205.14135

  Version:
    - Link:
        https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2
        https://huggingface.co/NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3

# attention-sinks
pip install attention_sinks

# flash-attn
!export CUDA_HOME=/usr/local/cuda-11.8
!MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq
!pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq

Version

import torch, transformers,torchvision
torch.__version__,transformers.__version__, torchvision.__version__
#OUTPUTS: ('2.0.1+cu118', '4.34.0', '0.15.2+cu118')

How to use


from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)

from attention_sinks import AutoModelForCausalLM

import torch

# model_id = 'Open-Orca/Mistral-7B-OpenOrca'
model_id='NickyNicky/Mixtral-2x7b-OpenOrca-oasst_top1_2023-08-25-v1.0'

model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             load_in_4bit=True,
                                             low_cpu_mem_usage= True,
                                             #use_flash_attention_2=True, #GPU A100 or GPU supported

                                             attention_sink_size=4,
                                             attention_sink_window_size=1024, #512, # <- Low for the sake of faster generation
                                             )

max_length=2048
print("max_length",max_length)


tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          # use_fast = False,
                                          max_length=max_length,)

tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'right'

#EXAMPLE #1
txt="""<|im_start|>user
I'm looking for an efficient Python script to output prime numbers. Can you help me out? I'm interested in a script that can handle large numbers and output them quickly. Also, it would be great if the script could take a range of numbers as input and output all the prime numbers within that range. Can you generate a script that fits these requirements? Thanks!<|im_end|>
<|im_start|>assistant
"""

#EXAMPLE #2
txt="""<|im_start|>user
Estoy desarrollando una REST API con Nodejs, y estoy tratando de aplicar algún sistema de seguridad, ya sea con tokens o algo similar, me puedes ayudar?<|im_end|>
<|im_start|>assistant
"""

inputs = tokenizer.encode(txt, return_tensors="pt").to("cuda")

generation_config = GenerationConfig(
              max_new_tokens=max_new_tokens,
              temperature=0.7,
              top_p=0.9,
              top_k=len_tokens,
              repetition_penalty=1.11, 
              do_sample=True,
              #  pad_token_id=tokenizer.eos_token_id,
              #  eos_token_id=tokenizer.eos_token_id,
              #  use_cache=True,
              # stopping_criteria= StoppingCriteriaList([stopping_criteria]),
          )
outputs = model.generate(generation_config=generation_config,
                                input_ids=inputs,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True

#MIX-MOE-mergekit

experts:
  - source_model: NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2
    positive_prompts:
      - ""

  - source_model: NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3
    positive_prompts:
      - ""
    
base_model: NickyNicky/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v3
gate_mode: random # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
Downloads last month
10
Safetensors
Model size
12.9B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train NickyNicky/Mixtral-2x7b-OpenOrca-oasst_top1_2023-08-25-v1.0