Nietn's picture
Model save
bcdda94 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3320
  • Accuracy: 0.9290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3375 0.0617 37 2.1297 0.3
1.7263 1.0625 75 1.4907 0.4714
0.675 2.0617 112 0.6070 0.8714
0.3702 3.0625 150 0.4089 0.8571
0.205 4.0617 187 0.4285 0.8286
0.3209 5.0625 225 0.2749 0.8714
0.1253 6.0617 262 0.0571 0.9857
0.1052 7.0625 300 0.2550 0.9429
0.1586 8.0617 337 0.1588 0.9429
0.0498 9.0625 375 0.0736 0.9857
0.0958 10.0617 412 0.0911 0.9571
0.1095 11.0625 450 0.0448 0.9857
0.0065 12.0617 487 0.0734 0.9857
0.0019 13.0625 525 0.0603 0.9857
0.0018 14.0617 562 0.0607 0.9857
0.0018 15.0625 600 0.0634 0.9857

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.0.1+cu117
  • Datasets 3.2.0
  • Tokenizers 0.20.3