Florence-2 Recap-DataComp LoRA Adapter

This repository contains a LoRA adapter trained on the UCSC-VLAA/Recap-DataComp-1B dataset for the Florence-2-base-FT model. It's designed to enhance the model's captioning capabilities, providing more detailed and descriptive image captions.

Usage

To use this LoRA adapter, you'll need to load it along with the Florence-2-base model using the PEFT library. Here's an example of how to use it:

from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import requests

def caption(image):
    base_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
    processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
    prompt = "<MORE_DETAILED_CAPTION>"
    adapter_name = "NikshepShetty/Florence-2-Recap-DataComp"
    model = PeftModel.from_pretrained(base_model, adapter_name, trust_remote_code=True)
    inputs = processor(text=prompt, images=image, return_tensors="pt")

    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        do_sample=False,
        num_beams=3
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

    parsed_answer = processor.post_process_generation(generated_text, task="<MORE_DETAILED_CAPTION>", image_size=(image.width, image.height))

    print(parsed_answer)

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
caption(image)

This code demonstrates how to:

  1. Load the base Florence-2 model
  2. Load the LoRA adapter
  3. Process an image and generate a detailed caption

Note: Make sure you have the required libraries installed: transformers, peft, einops, flash_attn, timm, Pillow, and requests.

Evaluation results

Our LoRA adapter shows improvements over the base Florence-2 model across all metrics for MORE_DETAILED_CAPTION tag for 1000 images on the foundation-multimodal-models/DetailCaps-4870 dataset:

Metric Base Model Adapted Model Improvement
CAPTURE 0.546 0.553 +1.3%
METEOR 0.213 0.240 +12.7%
BLEU 0.110 0.150 +36.4%
CIDEr 0.031 0.035 +12.9%
ROUGE-L 0.275 0.294 +6.9%

These results demonstrate that our LoRA adapter enhances the image captioning capabilities of the Florence-2 base model, particularly in generating more detailed and accurate captions.

Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train NikshepShetty/Florence-2-Recap-DataComp

Evaluation results

  • meteor on foundation-multimodal-models/DetailCaps-4870
    self-reported
    0.240
  • bleu on foundation-multimodal-models/DetailCaps-4870
    self-reported
    0.150
  • cider on foundation-multimodal-models/DetailCaps-4870
    self-reported
    0.035
  • capture on foundation-multimodal-models/DetailCaps-4870
    self-reported
    0.553
  • rouge-l on foundation-multimodal-models/DetailCaps-4870
    self-reported
    0.294