t5-small-thaisum-title-mt5tokenizer

This model is a fine-tuned version of Nopphakorn/t5-small-thaisum-title-mt5tokenizer on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4541
  • Rouge1: 0.0552
  • Rouge2: 0.0069
  • Rougel: 0.0547
  • Rougelsum: 0.0546
  • Gen Len: 18.9956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
4.7436 1.0 765 4.8643 0.0029 0.0 0.0029 0.0029 18.9897
4.7069 2.0 1530 4.8482 0.0114 0.0015 0.0111 0.0115 18.9941
4.6588 3.0 2295 4.8272 0.0054 0.0 0.0055 0.0055 18.9883
4.6664 4.0 3060 4.8044 0.0116 0.0 0.0113 0.0116 18.9853
4.6283 5.0 3825 4.7903 0.0094 0.0 0.0095 0.0093 18.9868
4.6145 6.0 4590 4.7669 0.009 0.0 0.0088 0.0088 18.9941
4.5759 7.0 5355 4.7432 0.008 0.0 0.0079 0.0079 18.9883
4.5419 8.0 6120 4.7275 0.012 0.0015 0.012 0.012 18.9941
4.5486 9.0 6885 4.7043 0.0098 0.0015 0.0099 0.0097 18.9941
4.5095 10.0 7650 4.6773 0.0085 0.0 0.0088 0.0086 18.9941
4.4682 11.0 8415 4.6561 0.0115 0.0 0.0112 0.0114 18.9927
4.4783 12.0 9180 4.6326 0.0063 0.0 0.0063 0.0061 18.9868
4.4825 13.0 9945 4.6069 0.0111 0.0 0.0109 0.0111 18.9838
4.4455 14.0 10710 4.5836 0.0086 0.0 0.0084 0.0085 18.9941
4.4328 15.0 11475 4.5587 0.0089 0.0 0.0091 0.0088 18.9912
4.3982 16.0 12240 4.5294 0.0111 0.0 0.0112 0.0112 18.9868
4.3463 17.0 13005 4.5069 0.0135 0.0 0.0137 0.0137 18.9853
4.3379 18.0 13770 4.4717 0.011 0.0007 0.0109 0.011 18.9897
4.3303 19.0 14535 4.4460 0.0117 0.0007 0.0119 0.0118 18.9853
4.2983 20.0 15300 4.4110 0.0107 0.0 0.0109 0.0108 18.9868
4.265 21.0 16065 4.3800 0.0095 0.0 0.0096 0.0095 18.9941
4.2507 22.0 16830 4.3528 0.0105 0.0 0.0106 0.0104 18.9941
4.2184 23.0 17595 4.3246 0.0125 0.0007 0.0128 0.0125 18.9941
4.1746 24.0 18360 4.3013 0.0116 0.0 0.0118 0.0115 19.0
4.1744 25.0 19125 4.2724 0.0127 0.0 0.0128 0.0127 18.9956
4.1123 26.0 19890 4.2408 0.0127 0.0 0.0128 0.0128 19.0
4.131 27.0 20655 4.2045 0.0118 0.0 0.0121 0.0118 18.9897
4.0725 28.0 21420 4.1815 0.0112 0.0 0.0113 0.011 19.0
4.0439 29.0 22185 4.1452 0.0154 0.0024 0.0154 0.0152 19.0
4.0814 30.0 22950 4.1151 0.0142 0.0007 0.0143 0.014 19.0
4.009 31.0 23715 4.0963 0.015 0.0007 0.015 0.015 18.9985
4.0326 32.0 24480 4.0679 0.016 0.0 0.016 0.0161 19.0
3.948 33.0 25245 4.0460 0.0137 0.0015 0.0133 0.0132 18.9971
3.9401 34.0 26010 4.0070 0.0162 0.0024 0.0161 0.016 18.9985
3.9111 35.0 26775 3.9874 0.0209 0.0042 0.0209 0.021 18.9985
3.899 36.0 27540 3.9650 0.0185 0.0 0.0186 0.0186 18.9985
3.8821 37.0 28305 3.9457 0.0236 0.0029 0.024 0.024 19.0
3.8687 38.0 29070 3.9105 0.0241 0.0034 0.0239 0.0238 19.0
3.8076 39.0 29835 3.9029 0.0199 0.002 0.0199 0.0201 19.0
3.8063 40.0 30600 3.8750 0.0251 0.0034 0.0244 0.0246 19.0
3.7896 41.0 31365 3.8448 0.025 0.0028 0.0248 0.0249 18.9941
3.7672 42.0 32130 3.8287 0.0336 0.0029 0.0333 0.0332 19.0
3.7919 43.0 32895 3.8022 0.0268 0.0039 0.0268 0.0268 18.9956
3.75 44.0 33660 3.7723 0.0286 0.0044 0.0286 0.0284 18.9971
3.7263 45.0 34425 3.7630 0.0308 0.0039 0.0308 0.0307 19.0
3.7053 46.0 35190 3.7412 0.0341 0.0037 0.0335 0.0335 19.0
3.7022 47.0 35955 3.7214 0.0347 0.0044 0.0335 0.0336 18.9897
3.6528 48.0 36720 3.7059 0.0318 0.0044 0.032 0.032 19.0
3.6614 49.0 37485 3.6833 0.0313 0.0044 0.031 0.0309 18.9956
3.6339 50.0 38250 3.6691 0.0357 0.0051 0.0353 0.0352 18.9853
3.6153 51.0 39015 3.6500 0.0373 0.0044 0.0363 0.0365 18.9912
3.6083 52.0 39780 3.6360 0.0358 0.0051 0.0354 0.0354 18.9985
3.5857 53.0 40545 3.6272 0.0409 0.0044 0.0397 0.0396 19.0
3.5903 54.0 41310 3.6141 0.0455 0.0039 0.044 0.0439 18.9956
3.5429 55.0 42075 3.6044 0.0405 0.0054 0.0393 0.0394 18.9883
3.5526 56.0 42840 3.5933 0.0379 0.0049 0.037 0.0367 18.9883
3.5075 57.0 43605 3.5820 0.0431 0.0071 0.041 0.041 18.9985
3.5233 58.0 44370 3.5698 0.045 0.0064 0.0433 0.0434 18.9897
3.5022 59.0 45135 3.5680 0.0432 0.0061 0.0419 0.0416 18.9941
3.5258 60.0 45900 3.5604 0.047 0.0069 0.0452 0.0453 18.9956
3.4763 61.0 46665 3.5532 0.0465 0.0069 0.0452 0.0451 18.9985
3.4591 62.0 47430 3.5468 0.0429 0.0078 0.0425 0.0422 18.9971
3.471 63.0 48195 3.5359 0.0426 0.0078 0.0428 0.0426 18.9971
3.4671 64.0 48960 3.5348 0.0441 0.0064 0.0437 0.0436 18.9941
3.4588 65.0 49725 3.5291 0.0436 0.0064 0.0427 0.0426 18.9941
3.4214 66.0 50490 3.5168 0.0409 0.0071 0.0407 0.0408 18.9956
3.4531 67.0 51255 3.5091 0.0476 0.0082 0.0477 0.0479 18.9956
3.3936 68.0 52020 3.5016 0.044 0.0073 0.0441 0.0442 18.9956
3.4113 69.0 52785 3.5028 0.0473 0.0069 0.0472 0.0472 18.9956
3.4092 70.0 53550 3.4993 0.0483 0.0078 0.0488 0.0485 18.9985
3.3847 71.0 54315 3.4959 0.053 0.0078 0.0524 0.0524 18.9956
3.4099 72.0 55080 3.4906 0.0549 0.0069 0.0541 0.0542 18.9985
3.3774 73.0 55845 3.4821 0.0527 0.0064 0.052 0.052 18.9971
3.3677 74.0 56610 3.4790 0.0542 0.0069 0.0534 0.0534 18.9956
3.3707 75.0 57375 3.4747 0.0562 0.0069 0.0556 0.0557 18.9956
3.3953 76.0 58140 3.4713 0.0567 0.0069 0.056 0.056 18.9956
3.3767 77.0 58905 3.4695 0.0559 0.0069 0.0552 0.0551 18.9956
3.3455 78.0 59670 3.4668 0.0518 0.0069 0.0514 0.0508 18.9985
3.3749 79.0 60435 3.4648 0.055 0.0069 0.0546 0.0545 18.9941
3.3447 80.0 61200 3.4648 0.0534 0.0069 0.0529 0.0526 18.9956
3.3892 81.0 61965 3.4643 0.0572 0.0078 0.0568 0.0564 18.9985
3.3681 82.0 62730 3.4640 0.0545 0.0069 0.0542 0.0537 18.9956
3.3186 83.0 63495 3.4595 0.0574 0.0069 0.0569 0.0569 18.9956
3.3422 84.0 64260 3.4598 0.0553 0.0069 0.0549 0.0548 18.9956
3.3511 85.0 65025 3.4565 0.0563 0.0078 0.0561 0.0561 18.9956
3.3469 86.0 65790 3.4576 0.0569 0.0069 0.0562 0.0563 18.9956
3.345 87.0 66555 3.4579 0.0553 0.0069 0.0549 0.0548 18.9956
3.3611 88.0 67320 3.4558 0.0553 0.0069 0.0549 0.0548 18.9956
3.3423 89.0 68085 3.4559 0.0569 0.0069 0.0562 0.0563 18.9956
3.3575 90.0 68850 3.4560 0.0553 0.0069 0.0549 0.0548 18.9956
3.3322 91.0 69615 3.4560 0.0569 0.0069 0.0562 0.0563 18.9956
3.3303 92.0 70380 3.4551 0.0569 0.0069 0.0562 0.0563 18.9956
3.3676 93.0 71145 3.4542 0.0569 0.0069 0.0562 0.0563 18.9956
3.3219 94.0 71910 3.4541 0.0552 0.0069 0.0547 0.0546 18.9956
3.3563 95.0 72675 3.4540 0.0569 0.0069 0.0562 0.0563 18.9956
3.3616 96.0 73440 3.4541 0.0569 0.0069 0.0562 0.0563 18.9956
3.3417 97.0 74205 3.4543 0.0552 0.0069 0.0547 0.0546 18.9956
3.3683 98.0 74970 3.4541 0.0552 0.0069 0.0547 0.0546 18.9956
3.3402 99.0 75735 3.4541 0.0552 0.0069 0.0547 0.0546 18.9956
3.3413 100.0 76500 3.4541 0.0552 0.0069 0.0547 0.0546 18.9956

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
40
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.