cicdatopea's picture
update ipex result
e605c28 verified
|
raw
history blame
11.5 kB
metadata
datasets:
  - NeelNanda/pile-10k
base_model:
  - deepseek-ai/DeepSeek-V3

Model Details

This model is an int4 model with group_size 128 and symmetric quantization of deepseek-ai/DeepSeek-V3 generated by intel/auto-round algorithm.

Please note this model may introduce overflow issue cuased by FP16 kernel , which is tipically used on cuda device. Additionally, loading the model in Transformers can be quite slow. Consider using an alternative serving framework for better performance.

Due to limited GPU resources, we have only tested a few prompts on a CPU backend with QBits. If this model does not meet your performance expectations, you may explore another quantized model in AWQ format, generated via AutoRound with different hyperparameters. This alternative model will be uploaded soon.

Please follow the license of the original model.

How To Use

INT4 Inference on CPU with Qbits(Recommend)

pip3 install auto-round (it will install intel-extension-for-pytorch and intel-extension-for-transformers both). For intel cpu, it will prioritize using intel-extension-for-pytorch , for other cpus, it will prioritize using intel-extension-for-transformers.

To make sure to use qbits with intel-extension-for-transformers, please uninstall intel-extension-for-pytorch

intel-extension-for-transformers faster repacking, slower inference,higher accuracy intel-extension-for-pytorch much slower repacking, faster inferecne, lower accuracy

from auto_round import AutoRoundConfig ##must import for autoround format
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

quantized_model_dir = "OPEA/DeepSeek-V3-int4-sym-inc-cpu"
quantization_config = AutoRoundConfig(
    backend="cpu"
)
model = AutoModelForCausalLM.from_pretrained(
    quantized_model_dir,
    torch_dtype=torch.float16,
    trust_remote_code=True,
    device_map="cpu",
    revision="8fe0735",##use autoround format, the only difference is config.json
    quantization_config = quantization_config, ##cpu only machine don't need to set this value
    
)

tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir,trust_remote_code=True)
prompt = "There is a girl who likes adventure,"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=200,  ##change this to align with the official usage
    do_sample=False  ##change this to align with the official usage
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

prompt = "9.11和9.8哪个数字大"  

##INT4
"""要比较 **9.11** 和 **9.8** 的大小,可以按照以下步骤进行:

1. **比较整数部分**:
   - 两个数的整数部分都是 **9**,所以整数部分相同。

2. **比较小数部分**:
   - **9.11** 的小数部分是 **0.11**
   - **9.8** 的小数部分是 **0.8**(即 **0.80**)

3. **分析小数部分**:
   - **0.80** 大于 **0.11**

因此,**9.8** 大于 **9.11**。

最终答案:\boxed{9.8}

"""

prompt = "strawberry中有几个r?"
##INT4
"""
### 第一步:理解问题

首先,我需要明确问题的含义。问题是:“strawberry中有几个r?”。这里的“strawberry”是一个英文单词,意思是“草莓”。问题问的是这个单 词中有多少个字母“r”。

### 第二步:分解单词

为了找出“strawberry”中有多少个“r”,我需要将这个单词分解成单个字母。让我们逐个字母来看:

- s
- t
- r
- a
- w
- b
- e
- r
- r
- y

### 第三步:识别字母“r”

现在,我需要找出这些字母中哪些是“r”。让我们逐一检查:

1. s - 不是r
2. t - 不是r
3. r - 是r
4. a - 不是r
5. w - 不是r
6. b - 不是r
7. e - 不是r
8. r - 是r
"""

prompt = "How many r in strawberry."
##INT4 
"""The word "strawberry" contains **3 "r"s.
"""

prompt = "There is a girl who likes adventure,"
##INT4:
"""That's wonderful! A girl who loves adventure is likely curious, brave, and eager to explore the world around her. Here are some ideas to fuel her adventurous spirit:

### **Outdoor Adventures**

- **Hiking:** Explore local trails, national parks, or mountains.
- **Camping:** Spend a night under the stars and connect with nature.
- **Rock Climbing:** Challenge herself with bouldering or climbing walls.
- **Kayaking/Canoeing:** Paddle through rivers, lakes, or even the ocean.
- **Zip-lining:** Soar through the treetops for an adrenaline rush.

### **Travel Adventures**

- **Road Trips:** Plan a journey to new cities or scenic destinations.
- **Backpacking:** Travel light and explore different cultures and landscapes.
- **Volunteer Abroad:** Combine adventure with helping others in a new country.

### **Creative Adventures**

- **Photography:** Capture the beauty
"""

prompt = "Please give a brief introduction of DeepSeek company."
##INT4:
"""DeepSeek Artificial Intelligence Co., Ltd. (referred to as "DeepSeek" or "深度求索") , founded in 2023, is a Chinese company dedicated to making AGI a reality"""

INT4 Inference on CPU with IPEX

pip3 install auto-round (it will install intel-extension-for-pytorch and intel-extension-for-transformers both). For intel cpu, it will prioritize using intel-extension-for-pytorch , for other cpus, it will prioritize using intel-extension-for-transformers.

To make sure to use intel-extension-for-pytorch, please uninstall intel-extension-for-transformers

use the same code above

Prompt: 9.119.8哪个数字大
Generated: 要比较 **9.11** 和 **9.8** 的大小,可以按照以下步骤进行:

1. **比较整数部分**:
   - 两个数的整数部分都是 **9**,所以整数部分相同。

2. **比较小数部分**:
   - **9.11** 的小数部分是 **0.11**
   - **9.8** 的小数部分是 **0.8**

3. **统一小数位数**:
   - 将 **0.8** 转换为 **0.80**,以便于比较。

4. **直接比较小数部分**:
   - **0.80** > **0.11**

因此,**9.8** 大于 **9.11**。

最终答案:\boxed{9.8}

Prompt: strawberry中有几个r? Generated: ### 第一步:理解问题

首先,我需要明确问题的含义。问题是:“strawberry中有几个r?”。这里的“strawberry”是一个英文单词,意思是“草莓”。问题问的是这个单 词中有多少个字母“r”。

第二步:分解单词

为了找出“strawberry”中有多少个“r”,我需要将这个单词分解成单个字母。让我们逐个字母来看:

  • s
  • t
  • r
  • a
  • w
  • b
  • e
  • r
  • r
  • y

第三步:识别字母“r”

现在,我需要找出这些字母中哪些是“r”。让我们逐一检查:

  1. s - 不是r
  2. t - 不是r
  3. r - 是r
  4. a - 不是r
  5. w - 不是r
  6. b

Prompt: How many r in strawberry. Generated: The word "strawberry" contains **3 "r"s.


Prompt: There is a girl who likes adventure, Generated: That sounds like the start of an exciting story! A girl who loves adventure could be the protagonist of countless thrilling tales. Here are a few ideas to spark your imagination:

  1. The Explorer of Lost Lands: She discovers a hidden map leading to a forgotten civilization deep in the jungle. Along the way, she faces wild animals, solves ancient puzzles, and uncovers secrets about her own family.

  2. The Skybound Adventurer: She builds or finds a mysterious airship and sets off to explore floating islands, sky cities, and uncharted clouds. Along the way, she encounters sky pirates, befriends mythical creatures, and learns to navigate the winds.

  3. The Time Traveler: She stumbles upon a device that allows her to travel through time. She visits ancient civilizations, future worlds, and pivotal moments in history, all while trying to fix a timeline that’


Prompt: Please give a brief introduction of DeepSeek company. Generated: DeepSeek Artificial Intelligence Co., Ltd. (referred to as "DeepSeek" or "深度求索") , founded in 2023, is a Chinese company dedicated to making AGI a reality.


Prompt: hello Generated: Hello! How can I assist you today? 😊

INT4 Inference on CUDA(have not tested, maybe need 8X80G GPU)

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
quantized_model_dir = "OPEA/DeepSeek-V3-int4-sym-gptq-inc-preview"

model = AutoModelForCausalLM.from_pretrained(
    quantized_model_dir,
    torch_dtype=torch.float16,
    trust_remote_code=True,
    device_map="auto"
    
)

tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir,trust_remote_code=True)
prompt = "There is a girl who likes adventure,"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=200,  ##change this to align with the official usage
    do_sample=False  ##change this to align with the official usage
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

Evaluate the model

we have no enough resource to evaluate the model

Generate the model

need 200G GPU memory, details will be updated later

Ethical Considerations and Limitations

The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Therefore, before deploying any applications of the model, developers should perform safety testing.

Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

  • Intel Neural Compressor link

Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.

Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

arxiv github