SimNPO-Unlearned Model on Task "MUSE - Books"

Model Details

Unlearning Algorithm

This model uses the SimNPO unlearning algorithm with the following optimization objective: SimNPO(θ)=E(x,y)Df[2βlogσ(βylogπθ(yx)γ)]+λE(x,y)Dr[logπθ(yx)]\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)] Unlearning hyper-parameters:

  • Learning Rate: 1e-5
  • beta: 0.7
  • lambda: 1.0
  • gamma: 0.0

Loading the Model

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-iclm-7b", torch_dtype=torch.bfloat16, device_map='auto')

Evaluation Results

VerbMem Df KnowMem Df PrivLeak KnowMem Dr
Origin 99.56 58.32 -56.32 67.01
Retrain 14.30 28.90 0.00 74.50
NPO 0.00 0.00 -31.17 23.71
SimNPO 0.00 0.00 -19.82 48.27

Citation

If you use this model in your research, please cite:

@article{fan2024simplicity,
  title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
  author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
  journal={arXiv preprint arXiv:2410.07163},
  year={2024}
}

Reporting Issues

Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple

Downloads last month
6
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for OPTML-Group/SimNPO-MUSE-Books-iclm-7b

Finetuned
(1)
this model

Dataset used to train OPTML-Group/SimNPO-MUSE-Books-iclm-7b

Collection including OPTML-Group/SimNPO-MUSE-Books-iclm-7b