Topic-Tagger / README.md
OmAlve's picture
finetuned on tinystories
96d8033 verified
|
raw
history blame
1.62 kB
---
license: gemma
base_model: google/gemma-2b
tags:
- generated_from_trainer
model-index:
- name: superkalam
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# superkalam
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
- load_in_4bit: True
- load_in_8bit: False
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.4.0
- Transformers 4.38.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.15.2