metadata
language:
- ar
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
datasets:
- Omartificial-Intelligence-Space/Arabic-NLi-Triplet
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة
sentences:
- رجل يقدم عرضاً
- هناك رجل بالخارج قرب الشاطئ
- رجل يجلس على أريكه
- source_sentence: رجل يقفز إلى سريره القذر
sentences:
- السرير قذر.
- رجل يضحك أثناء غسيل الملابس
- الرجل على القمر
- source_sentence: الفتيات بالخارج
sentences:
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات
- فتيان يركبان في جولة متعة
- >-
ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط
والثالثة تتحدث إليهن
- source_sentence: الرجل يرتدي قميصاً أزرق.
sentences:
- >-
رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة
حمراء مع الماء في الخلفية.
- كتاب القصص مفتوح
- رجل يرتدي قميص أسود يعزف على الجيتار.
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.
sentences:
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه
- رجل يستلقي على وجهه على مقعد في الحديقة.
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
pipeline_tag: sentence-similarity
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8538831619509135
name: Pearson Cosine
- type: spearman_cosine
value: 0.861625750018802
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8496745674597512
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8513333417508545
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8516261261374778
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8540549341060195
name: Spearman Euclidean
- type: pearson_dot
value: 0.7281308266536204
name: Pearson Dot
- type: spearman_dot
value: 0.7230282720855726
name: Spearman Dot
- type: pearson_max
value: 0.8538831619509135
name: Pearson Max
- type: spearman_max
value: 0.861625750018802
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8542379189261009
name: Pearson Cosine
- type: spearman_cosine
value: 0.8609329396560859
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8486657899695456
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8512120732504748
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8505249483849495
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8538738365440234
name: Spearman Euclidean
- type: pearson_dot
value: 0.7075618032859148
name: Pearson Dot
- type: spearman_dot
value: 0.7028728329509918
name: Spearman Dot
- type: pearson_max
value: 0.8542379189261009
name: Pearson Max
- type: spearman_max
value: 0.8609329396560859
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8486308733045101
name: Pearson Cosine
- type: spearman_cosine
value: 0.8578681811996274
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8404506123980291
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.845565163232125
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8414758099131773
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8471566121478254
name: Spearman Euclidean
- type: pearson_dot
value: 0.6668664182302968
name: Pearson Dot
- type: spearman_dot
value: 0.6651222481800894
name: Spearman Dot
- type: pearson_max
value: 0.8486308733045101
name: Pearson Max
- type: spearman_max
value: 0.8578681811996274
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8389761445410956
name: Pearson Cosine
- type: spearman_cosine
value: 0.8499312736457453
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8287388421834582
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8353046807483782
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8297699263897746
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8371843253238523
name: Spearman Euclidean
- type: pearson_dot
value: 0.5855876200722326
name: Pearson Dot
- type: spearman_dot
value: 0.5834920267418124
name: Spearman Dot
- type: pearson_max
value: 0.8389761445410956
name: Pearson Max
- type: spearman_max
value: 0.8499312736457453
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.8290685425698586
name: Pearson Cosine
- type: spearman_cosine
value: 0.8429054799136109
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8100968316314205
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8221121550434057
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8129044863346081
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8255133471709527
name: Spearman Euclidean
- type: pearson_dot
value: 0.5067257944655903
name: Pearson Dot
- type: spearman_dot
value: 0.5109761436588146
name: Spearman Dot
- type: pearson_max
value: 0.8290685425698586
name: Pearson Max
- type: spearman_max
value: 0.8429054799136109
name: Spearman Max
license: apache-2.0
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Omartificial-Intelligence-Space/Arabic-Nli-Matryoshka")
sentences = [
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.',
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه',
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8539 |
spearman_cosine |
0.8616 |
pearson_manhattan |
0.8497 |
spearman_manhattan |
0.8513 |
pearson_euclidean |
0.8516 |
spearman_euclidean |
0.8541 |
pearson_dot |
0.7281 |
spearman_dot |
0.723 |
pearson_max |
0.8539 |
spearman_max |
0.8616 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8542 |
spearman_cosine |
0.8609 |
pearson_manhattan |
0.8487 |
spearman_manhattan |
0.8512 |
pearson_euclidean |
0.8505 |
spearman_euclidean |
0.8539 |
pearson_dot |
0.7076 |
spearman_dot |
0.7029 |
pearson_max |
0.8542 |
spearman_max |
0.8609 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8486 |
spearman_cosine |
0.8579 |
pearson_manhattan |
0.8405 |
spearman_manhattan |
0.8456 |
pearson_euclidean |
0.8415 |
spearman_euclidean |
0.8472 |
pearson_dot |
0.6669 |
spearman_dot |
0.6651 |
pearson_max |
0.8486 |
spearman_max |
0.8579 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.839 |
spearman_cosine |
0.8499 |
pearson_manhattan |
0.8287 |
spearman_manhattan |
0.8353 |
pearson_euclidean |
0.8298 |
spearman_euclidean |
0.8372 |
pearson_dot |
0.5856 |
spearman_dot |
0.5835 |
pearson_max |
0.839 |
spearman_max |
0.8499 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8291 |
spearman_cosine |
0.8429 |
pearson_manhattan |
0.8101 |
spearman_manhattan |
0.8221 |
pearson_euclidean |
0.8129 |
spearman_euclidean |
0.8255 |
pearson_dot |
0.5067 |
spearman_dot |
0.511 |
pearson_max |
0.8291 |
spearman_max |
0.8429 |
Training Details
Training Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 tokens
- mean: 10.33 tokens
- max: 52 tokens
|
- min: 5 tokens
- mean: 13.21 tokens
- max: 49 tokens
|
- min: 5 tokens
- mean: 15.32 tokens
- max: 53 tokens
|
- Samples:
anchor |
positive |
negative |
شخص على حصان يقفز فوق طائرة معطلة |
شخص في الهواء الطلق، على حصان. |
شخص في مطعم، يطلب عجة. |
أطفال يبتسمون و يلوحون للكاميرا |
هناك أطفال حاضرون |
الاطفال يتجهمون |
صبي يقفز على لوح التزلج في منتصف الجسر الأحمر. |
الفتى يقوم بخدعة التزلج |
الصبي يتزلج على الرصيف |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
Omartificial-Intelligence-Space/arabic-n_li-triplet
- Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 tokens
- mean: 21.86 tokens
- max: 105 tokens
|
- min: 4 tokens
- mean: 10.22 tokens
- max: 49 tokens
|
- min: 4 tokens
- mean: 11.2 tokens
- max: 33 tokens
|
- Samples:
anchor |
positive |
negative |
امرأتان يتعانقان بينما يحملان حزمة |
إمرأتان يحملان حزمة |
الرجال يتشاجرون خارج مطعم |
طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة. |
طفلين يرتديان قميصاً مرقماً يغسلون أيديهم |
طفلين يرتديان سترة يذهبان إلى المدرسة |
رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس |
رجل يبيع الدونات لعميل |
امرأة تشرب قهوتها في مقهى صغير |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 256
per_device_eval_batch_size
: 256
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
prediction_loss_only
: True
per_device_train_batch_size
: 256
per_device_eval_batch_size
: 256
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.2294 |
500 |
10.1279 |
- |
- |
- |
- |
- |
0.4587 |
1000 |
8.0384 |
- |
- |
- |
- |
- |
0.6881 |
1500 |
7.3484 |
- |
- |
- |
- |
- |
0.9174 |
2000 |
4.2216 |
- |
- |
- |
- |
- |
1.0 |
2180 |
- |
0.8499 |
0.8579 |
0.8609 |
0.8429 |
0.8616 |
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.26.1
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}