intfloat-fine-tuned
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large-instruct
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: tr
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omerhan/intfloat-fine-tuned-vx")
# Run inference
sentences = [
'ACS sınıfı kimyasallar nedir',
'Reaktif dereceli kimyasallar tipik olarak ACS dereceli kimyasallardır ve bu nedenle ACS sertifikalarını kaybetmişlerdir. Carolina ayrıca sınırlı sayıda kimyasal için bir ambalaj seçeneği sunar. Konsantre asitler gibi aşındırıcı kimyasallar normalde cam şişelerde paketlenir.',
"Talimatlar: 1 Uygun sayılarla tüm kutuları doldurun (1. ve 2. Çeyrek dönem notunuzun her biri% 42,5'tir. Final Sınavı, dönem notunuzun% 15'idir). 2 Hangisini hesaplamak istediğinize bağlı olarak dönem notu veya final sınav notu kutusunu boş bırakın.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Size: 920,106 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 10.38 tokens
- max: 39 tokens
- min: 26 tokens
- mean: 81.21 tokens
- max: 149 tokens
- min: 4 tokens
- mean: 78.05 tokens
- max: 133 tokens
- Samples:
anchor positive negative Avustralya'ya özgü hangi meyve
Passiflora herbertiana. Avustralya'ya özgü nadir bir tutku meyvesi. Meyveler yeşil tenli, beyaz etli, bilinmeyen bir yenilebilir derecelendirmeye sahiptir. Bazı kaynaklar meyveyi yenilebilir, tatlı ve lezzetli olarak listelerken, diğerleri meyveleri acı ve yenemez olarak listeler. Avustralya'ya özgü nadir bir tutku meyvesi. Meyveler yeşil tenli, beyaz etli, bilinmeyen yenilebilir bir derecelendirmeye sahip. Bazı kaynaklar meyveyi tatlı olarak listeler.
Kola cevizi, Afrika'nın tropikal yağmur ormanlarına özgü bir ağaç cinsidir (Cola).
meyve ağaçları türleri
Kiraz. Kiraz ağaçları dünya çapında bulunur. Kirazdan siyah kiraza kadar değişen 40 veya daha fazla çeşit vardır. Meyve ile birlikte, kiraz ağaçları, son derece hoş kokulu hafif ve narin pembemsi-beyaz çiçekler üretir.Omments. Submit. Mülkünüze meyve ağaçları dikmek sadece size istikrarlı bir organik meyve kaynağı sağlamakla kalmaz, aynı zamanda bahçenizi güzelleştirmenizi ve oksijeni çevreye geri vermenizi sağlar.
Kola cevizi, Afrika'nın tropikal yağmur ormanlarına özgü bir ağaç cinsidir (Cola).
Harrison City Pa nerede yaşıyor?
Harrison City, Amerika Birleşik Devletleri'nin Pensilvanya eyaletinde yer alan Westmoreland County'de nüfus sayımına göre belirlenmiş bir yerdir. 2000 nüfus sayımında nüfus 155'tir.
En yakın şehirler: Vandling borough, PA (1.1 mil ), Simpson, PA (2.0 mil ), Union Dale borough, PA (2,1 mil ), Carbondale, PA (2,4 mil ), Waymart borough, PA (2,4 mil ), Mayfield borough, PA (2.9 mil ), Prompion borough, PA (2.9 mil ), Jermyn borough, PA (3.1 mil ).
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
gradient_accumulation_steps
: 8learning_rate
: 5e-06num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.01tf32
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.01warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0348 | 500 | 0.2397 |
0.0696 | 1000 | 0.1117 |
0.1043 | 1500 | 0.1016 |
0.1391 | 2000 | 0.0992 |
0.1739 | 2500 | 0.0971 |
0.2087 | 3000 | 0.0913 |
0.2434 | 3500 | 0.087 |
0.2782 | 4000 | 0.0902 |
0.3130 | 4500 | 0.0858 |
0.3478 | 5000 | 0.0816 |
0.3826 | 5500 | 0.0895 |
0.4173 | 6000 | 0.0779 |
0.4521 | 6500 | 0.0796 |
0.4869 | 7000 | 0.0806 |
0.5217 | 7500 | 0.0861 |
0.5565 | 8000 | 0.0784 |
0.5912 | 8500 | 0.0687 |
0.6260 | 9000 | 0.0758 |
0.6608 | 9500 | 0.0787 |
0.6956 | 10000 | 0.0692 |
0.7303 | 10500 | 0.0748 |
0.7651 | 11000 | 0.074 |
0.7999 | 11500 | 0.0728 |
0.8347 | 12000 | 0.0739 |
0.8695 | 12500 | 0.0685 |
0.9042 | 13000 | 0.0748 |
0.9390 | 13500 | 0.074 |
0.9738 | 14000 | 0.0693 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Omerhan/intfloat-fine-tuned-14376-v4
Base model
intfloat/multilingual-e5-large-instruct