Text Classification
Transformers
PyTorch
English
deberta-v2
reward-model
reward_model
RLHF
Inference Endpoints
theblackcat102's picture
Fix example typo
7dab415
---
license: mit
datasets:
- openai/webgpt_comparisons
- openai/summarize_from_feedback
- Dahoas/instruct-synthetic-prompt-responses
language:
- en
metrics:
- accuracy
tags:
- reward-model
- reward_model
- RLHF
---
# Reward model trained from human feedback
Reward model (RM) trained to predict which generated answer is better judged by a human, given a question.
RM are useful in these domain:
- QA model evaluation
- serves as reward score in RLHF
All models are train on these dataset with a same split seed across datasets (if validation split wasn't available)
- [webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise)
# How to use
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
reward_name = "OpenAssistant/reward-model-deberta-v3-base"
rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants."
inputs = tokenizer(question, answer, return_tensors='pt')
score = rank_model(**inputs).logits[0].cpu().detach()
print(score)
```
# Performance
Validation split accuracy
| Model | [WebGPT](https://huggingface.co/datasets/openai/webgpt_comparisons) | [Summary](https://huggingface.co/datasets/openai/summarize_from_feedback) | [SytheticGPT](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) |
|---|---|---|---|
| [electra-large-discriminator](https://huggingface.co/OpenAssistant/reward-model-electra-large-discriminator) | 59.30 | 68.66 | 99.85 |
| [deberta-v3-large](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large) | 61.13 | 72.23 | 99.94 |
| [deberta-v3-base](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base) | 59.07 | 66.84 | 99.85 |
Its likely SytheticGPT has somekind of surface pattern on the choosen-rejected pair which makes it trivial to differentiate between better the answer.