metadata
datasets:
- PKU-Alignment/PKU-SafeRLHF
language:
- en
tags:
- reinforcement-learning-from-human-feedback
- reinforcement-learning
- beaver
- safety
- llama
- ai-safety
- deepspeed
- rlhf
- alpaca
library_name: safe-rlhf
🦫 Beaver's Reward Model
Model Details
The Beaver reward model is a preference model trained using the PKU-SafeRLHF dataset. It can play a role in the safe RLHF algorithm, helping the Beaver model become more helpful.
- Developed by: the PKU-Alignment Team.
- Model Type: An auto-regressive language model based on the transformer architecture.
- License: Non-commercial license.
- Fine-tuned from model: LLaMA, Alpaca.
Model Sources
- Repository: https://github.com/PKU-Alignment/safe-rlhf
- Beaver: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0
- Dataset: https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
- Reward Model: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-reward
- Cost Model: https://huggingface.co/PKU-Alignment/beaver-7b-v1.0-cost
- Dataset Paper: https://arxiv.org/abs/2307.04657
- Paper: Coming soon...
How to Use the Reward Model
from transformers import AutoTokenizer
from safe_rlhf.models import AutoModelForScore
model = AutoModelForScore.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', device_map='auto')
tokenizer = AutoTokenizer.from_pretrained('PKU-Alignment/beaver-7b-v1.0-reward', use_fast=False)
input = 'BEGINNING OF CONVERSATION: USER: hello ASSISTANT:Hello! How can I help you today?'
input_ids = tokenizer(input, return_tensors='pt')
output = model(**input_ids)
print(output)
# ScoreModelOutput(
# scores=tensor([[[-19.6476],
# [-20.2238],
# [-21.4228],
# [-19.2506],
# [-20.2728],
# [-23.8799],
# [-22.6898],
# [-21.5825],
# [-21.0855],
# [-20.2068],
# [-23.8296],
# [-21.4940],
# [-21.9484],
# [-13.1220],
# [ -6.4499],
# [ -8.1982],
# [ -7.2492],
# [ -9.3377],
# [-13.5010],
# [-10.4932],
# [ -9.7837],
# [ -6.4540],
# [ -6.0084],
# [ -5.8093],
# [ -6.6134],
# [ -5.8995],
# [ -9.1505],
# [-11.3254]]], grad_fn=<ToCopyBackward0>),
# end_scores=tensor([[-11.3254]], grad_fn=<ToCopyBackward0>)
# )