PlasmicZ/SIH
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.9247
- Validation Loss: 2.8526
- Train Accuracy: 0.6278
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
3.6955 | 3.6968 | 0.0111 | 0 |
3.6828 | 3.6418 | 0.0639 | 1 |
3.4401 | 3.1957 | 0.5139 | 2 |
3.0932 | 2.9307 | 0.6278 | 3 |
2.9247 | 2.8526 | 0.6278 | 4 |
Framework versions
- Transformers 4.42.4
- TensorFlow 2.17.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for PlasmicZ/SIH
Base model
distilbert/distilbert-base-uncased