PlasmicZ/SIH3

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.1868
  • Validation Loss: 3.1679
  • Train Accuracy: 0.6194
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
3.6966 3.6944 0.0139 0
3.6920 3.6912 0.0278 1
3.6463 3.5387 0.3056 2
3.4074 3.2592 0.5667 3
3.2234 3.1679 0.6194 4
3.1902 3.1679 0.6194 5
3.1887 3.1679 0.6194 6
3.1907 3.1679 0.6194 7
3.1893 3.1679 0.6194 8
3.1843 3.1679 0.6194 9
3.1894 3.1679 0.6194 10
3.1893 3.1679 0.6194 11
3.1881 3.1679 0.6194 12
3.1935 3.1679 0.6194 13
3.1868 3.1679 0.6194 14

Framework versions

  • Transformers 4.42.4
  • TensorFlow 2.17.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model's library. Check the docs .

Model tree for PlasmicZ/SIH3

Finetuned
(7276)
this model