PlasmicZ commited on
Commit
b0606e6
·
1 Parent(s): 036dc45

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +55 -0
  2. config.json +107 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +55 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-uncased
4
+ tags:
5
+ - generated_from_keras_callback
6
+ model-index:
7
+ - name: PlasmicZ/SIH3
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
+ probably proofread and complete it, then remove this comment. -->
13
+
14
+ # PlasmicZ/SIH3
15
+
16
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Train Loss: 3.6966
19
+ - Validation Loss: 3.6944
20
+ - Train Accuracy: 0.0139
21
+ - Epoch: 0
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
41
+ - training_precision: float32
42
+
43
+ ### Training results
44
+
45
+ | Train Loss | Validation Loss | Train Accuracy | Epoch |
46
+ |:----------:|:---------------:|:--------------:|:-----:|
47
+ | 3.6966 | 3.6944 | 0.0139 | 0 |
48
+
49
+
50
+ ### Framework versions
51
+
52
+ - Transformers 4.42.4
53
+ - TensorFlow 2.17.0
54
+ - Datasets 2.21.0
55
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "India",
13
+ "1": "Shiv Sena",
14
+ "2": "knife ",
15
+ "3": "musician ",
16
+ "4": "affiliate",
17
+ "5": "washroom",
18
+ "6": "live in relationship",
19
+ "7": "level sign 1",
20
+ "8": "swing ",
21
+ "9": "nurse ",
22
+ "10": "excuse",
23
+ "11": "raise ",
24
+ "12": "dartboard",
25
+ "13": "update news, information",
26
+ "14": "4 four",
27
+ "15": "Huawei Mobile",
28
+ "16": "February",
29
+ "17": "pencil ",
30
+ "18": "proof sign 1",
31
+ "19": "secret ",
32
+ "20": "distracted",
33
+ "21": "bookcase, bookshelf",
34
+ "22": "one day cricket, 50 overs format sign and explanation",
35
+ "23": "greedy ",
36
+ "24": "Allahabad Bank",
37
+ "25": "form sign 1",
38
+ "26": "market",
39
+ "27": "Bengali",
40
+ "28": "strength",
41
+ "29": "truck ",
42
+ "30": "day",
43
+ "31": "Usury",
44
+ "32": "beetroot",
45
+ "33": "fry, frying",
46
+ "34": "accept",
47
+ "35": "network",
48
+ "36": "paste",
49
+ "37": "identity card ",
50
+ "38": "none, nothing ",
51
+ "39": "Peru"
52
+ },
53
+ "initializer_range": 0.02,
54
+ "label2id": {
55
+ "4 four": 14,
56
+ "Allahabad Bank": 24,
57
+ "Bengali": 27,
58
+ "February": 16,
59
+ "Huawei Mobile": 15,
60
+ "India": 0,
61
+ "Peru": 39,
62
+ "Shiv Sena": 1,
63
+ "Usury": 31,
64
+ "accept": 34,
65
+ "affiliate": 4,
66
+ "beetroot": 32,
67
+ "bookcase, bookshelf": 21,
68
+ "dartboard": 12,
69
+ "day": 30,
70
+ "distracted": 20,
71
+ "excuse": 10,
72
+ "form sign 1": 25,
73
+ "fry, frying": 33,
74
+ "greedy ": 23,
75
+ "identity card ": 37,
76
+ "knife ": 2,
77
+ "level sign 1": 7,
78
+ "live in relationship": 6,
79
+ "market": 26,
80
+ "musician ": 3,
81
+ "network": 35,
82
+ "none, nothing ": 38,
83
+ "nurse ": 9,
84
+ "one day cricket, 50 overs format sign and explanation": 22,
85
+ "paste": 36,
86
+ "pencil ": 17,
87
+ "proof sign 1": 18,
88
+ "raise ": 11,
89
+ "secret ": 19,
90
+ "strength": 28,
91
+ "swing ": 8,
92
+ "truck ": 29,
93
+ "update news, information": 13,
94
+ "washroom": 5
95
+ },
96
+ "max_position_embeddings": 512,
97
+ "model_type": "distilbert",
98
+ "n_heads": 12,
99
+ "n_layers": 6,
100
+ "pad_token_id": 0,
101
+ "qa_dropout": 0.1,
102
+ "seq_classif_dropout": 0.2,
103
+ "sinusoidal_pos_embds": false,
104
+ "tie_weights_": true,
105
+ "transformers_version": "4.42.4",
106
+ "vocab_size": 30522
107
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee19dc94d4a0c385ca1493e87fba3a19588863743ee166084108a4f269bc3ec2
3
+ size 268071880
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff