Pluto0616's picture
L2_agent
499a238

Action

Actions, also called tools, provide a suite of functions LLM-driven agents can use to interact with the real world and perform complex tasks.

Basic Concepts

Tool & Toolkit

There are two categories of tools:

  • tool: provide only one API to call.
  • toolkit: implement multiple APIs that undertake different sub-tasks.

Tool Description

In Lagent, the tool description is a dictionary containing the action's core information of usage, observed by LLMs for decision-making.

For simple tools, the description can be created as follows

TOOL_DESCRIPTION = {
    'name': 'bold',  # name of the tool
    'description': 'a function used to make text bold',  # introduce the tool's function
    'parameters': [  # a list of parameters the tool take.
        {
            'name': 'text', 'type': 'STRING', 'description': 'input content'
        }
    ],
    'required': ['text'],  # specify names of parameters required
}

In some situations there may be optional return_data, parameter_description keys describing the returns and argument passing format respectively.

`parameter_description` is usually inserted into the tool description automatically by the action's parser. It will be introduced in [Interface Design](#interface-design) .

For toolkits, the description is very similar but nest submethods

TOOL_DESCRIPTION = {
    'name': 'PhraseEmphasis',  # name of the toolkit
    'description': 'a toolkit which provides different styles of text emphasis',  # introduce the tool's function
    'api_list': [
        {
            'name': 'bold',
            'description': 'make text bold',
            'parameters': [
                {
                    'name': 'text', 'type': 'STRING', 'description': 'input content'
                }
            ],
            'required': ['text']
        },
        {
            'name': 'italic',
            'description': 'make text italic',
            'parameters': [
                {
                    'name': 'text', 'type': 'STRING', 'description': 'input content'
                }
            ],
            'required': ['text']
        }
    ]
}

Make Functions Tools

It's not necessary to prepare an extra description for a defined function. In Lagent we provide a decorator tool_api which can conveniently turn a function into a tool by automatically parsing the function's typehints and dosctrings to generate the description dictionary and binding it to an attribute api_description.

from lagent import tool_api

@tool_api
def bold(text: str) -> str:
    """make text bold

    Args:
        text (str): input text

    Returns:
        str: bold text
    """
    return '**' + text + '**'


bold.api_description
{'name': 'bold',
 'description': 'make text bold',
 'parameters': [{'name': 'text',
   'type': 'STRING',
   'description': 'input text'}],
 'required': ['text']}

Once returns_named_value is enabled you should declare the name of the return data, which will be processed to form a new field return_data:

@tool_api(returns_named_value=True)
def bold(text: str) -> str:
    """make text bold

    Args:
        text (str): input text

    Returns:
        bold_text (str): bold text
    """
    return '**' + text + '**'

bold.api_description
{'name': 'bold',
 'description': 'make text bold',
 'parameters': [{'name': 'text',
   'type': 'STRING',
   'description': 'input text'}],
 'required': ['text'],
 'return_data': [{'name': 'bold_text',
   'description': 'bold text',
   'type': 'STRING'}]}

Sometimes the tool may return a dict or tuple, and you want to elaborate each member in return_data rather than take them as a whole. Set explode_return=True and list them in the return part of docstrings.

@tool_api(explode_return=True)
def list_args(a: str, b: int, c: float = 0.0) -> dict:
    """Return arguments in dict format

    Args:
        a (str): a
        b (int): b
        c (float): c

    Returns:
        dict: input arguments
            - a (str): a
            - b (int): b
            - c: c
    """
    return {'a': a, 'b': b, 'c': c}
{'name': 'list_args',
 'description': 'Return arguments in dict format',
 'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'},
  {'name': 'b', 'type': 'NUMBER', 'description': 'b'},
  {'name': 'c', 'type': 'FLOAT', 'description': 'c'}],
 'required': ['a', 'b'],
 'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'},
  {'name': 'b', 'description': 'b', 'type': 'NUMBER'},
  {'name': 'c', 'description': 'c'}]}
Only Google style Python docstrings is currently supported.

Interface Design

BaseAction(description=None, parser=JsonParser, enable=True) is the base class all actions should inherit from. It takes three initialization arguments

  • description: a tool description dictionary, used set instance attribute description. Mostly you don't need explicitly pass this argument since the meta class of BaseAction will search methods decorated by tool_api and assemble their api_description as a class attribute __tool_description__, and if the initial description is left null, then __tool_description__ will be copied as description.

  • parser: BaseParser class. It will instantialize a parser used to validate the arguments of APIs in description.

    For example, JsonParser requires arguments passed in the format of JSON or dict. To make LLMs aware of this, It inserts a field parameter_description into the description.

    from lagent import BaseAction
    
    action = BaseAction(
        {
            'name': 'bold',
            'description': 'a function used to make text bold',
            'parameters': [
                {
                    'name': 'text', 'type': 'STRING', 'description': 'input content'
                }
            ],
            'required': ['text']
        }
    )
    action.description
    
    {'name': 'bold',
     'description': 'a function used to make text bold',
     'parameters': [{'name': 'text',
     'type': 'STRING',
     'description': 'input content'}],
     'required': ['text'],
     'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}
    
  • enable: specify whether the tool is available.

Custom Action

A simple tool must have its run method implemented, while APIs of toolkits should avoid naming conflicts with this reserved word.

`run` is allowed not to be decorated by `tool_api` for simple tools unless you want to hint the return data.
class Bold(BaseAction):

    def run(self, text: str):
        """make text bold

        Args:
            text (str): input text

        Returns:
            str: bold text
        """
        return '**' + text + '**'

class PhraseEmphasis(BaseAction):
    """a toolkit which provides different styles of text emphasis"""

    @tool_api
    def bold(self, text):
        """make text bold

        Args:
            text (str): input text

        Returns:
            str: bold text
        """
        return '**' + text + '**'

    @tool_api
    def italic(self, text):
        """make text italic

        Args:
            text (str): input text

        Returns:
            str: italic text
        """
        return '*' + text + '*'

# Inspect the default description
# Bold.__tool_description__, PhraseEmphasis.__tool_description__

Auto-registration

Any subclass of BaseAction will be registered automatically. You can use list_tools() and get_tool() to view all tools and initialize by name.

from lagent import list_tools, get_tool

list_tools()
['BaseAction',
 'InvalidAction',
 'NoAction',
 'FinishAction',
 'ArxivSearch',
 'BINGMap',
 'GoogleScholar',
 'GoogleSearch',
 'IPythonInterpreter',
 'PPT',
 'PythonInterpreter',
 'Bold',
 'PhraseEmphasis']

Create a PhraseEmphasis object

action = get_tool('PhraseEmphasis')
action.description
{'name': 'PhraseEmphasis',
 'description': 'a toolkit which provides different styles of text emphasis',
 'api_list': [{'name': 'bold',
   'description': 'make text bold',
   'parameters': [{'name': 'text',
     'type': 'STRING',
     'description': 'input text'}],
   'required': ['text'],
   'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
  {'name': 'italic',
   'description': 'make text italic',
   'parameters': [{'name': 'text',
     'type': 'STRING',
     'description': 'input text'}],
   'required': ['text'],
   'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]}

Tool Calling

Run a Tool

__call__ method of Action takes two arguments

  • inputs: It depends on the action's parser. Often a string in specific formats generated by LLMs.
    • JsonParser: Allow passing arguments in the format of JSON string or Python dict.
    • TupleParser: Allow passing arguments in the format of tuple string format or Python tuple.
  • name: Which API to call. Default is run.

It returns an ActionReturn object which encapsulates calling details

  • args: Dictionary of action inputs.
  • type: Action name.
  • result: List of dicts. Each contains two keys: 'type' and 'content'. when errors occur, it is None.
  • errmsg: Error message. Default is None.

Below is an example

from lagent import IPythonInterpreter, TupleParser

action1 = IPythonInterpreter()
ret = action1('{"command": "import math;math.sqrt(100)"}')
print(ret.result)
ret = action1({'command': 'import math;math.sqrt(100)'})
print(ret.result)

action2 = IPythonInterpreter(parser=TupleParser)
ret = action2('("import math;math.sqrt(100)", )')
print(ret.result)
ret = action2(('import math;math.sqrt(100)',))
print(ret.result)
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]
[{'type': 'text', 'content': '10.0'}]

Dynamic Invocation

Lagent provides an ActionExecutor to manage multiple tools. It will flatten api_list of toolkits and rename each {tool_name}.{api_name}.

from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter

executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()])
executor.get_actions_info()  # This information is fed to LLMs as the tool meta prompt
[{'name': 'ArxivSearch.get_arxiv_article_information',
  'description': 'Run Arxiv search and get the article meta information.',
  'parameters': [{'name': 'query',
    'type': 'STRING',
    'description': 'the content of search query'}],
  'required': ['query'],
  'return_data': [{'name': 'content',
    'description': 'a list of 3 arxiv search papers',
    'type': 'STRING'}],
  'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'},
 {'name': 'IPythonInterpreter',
  'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.",
  'parameters': [{'name': 'command',
    'type': 'STRING',
    'description': 'Python code'},
   {'name': 'timeout',
    'type': 'NUMBER',
    'description': 'Upper bound of waiting time for Python script execution.'}],
  'required': ['command'],
  'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]

Trigger an action through the executor

ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}')
ret.result
[{'type': 'text', 'content': '10.0'}]