Max Meyer
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,23 @@ license: apache-2.0
|
|
6 |
|
7 |
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# BEN SOA Benchmarks on Disk 5k Eval
|
10 |
|
11 |
### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
|
@@ -39,17 +56,3 @@ BEN is a deep learning model designed to automatically remove backgrounds from i
|
|
39 |
1. Clone Repo
|
40 |
2. Install requirements.txt
|
41 |
|
42 |
-
## Quick Start Code
|
43 |
-
```python
|
44 |
-
from BEN import BEN_Base
|
45 |
-
from PIL import Image
|
46 |
-
import torch
|
47 |
-
|
48 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
-
model = BEN_Base().to(device).eval()
|
50 |
-
model.loadcheckpoints("./BEN/BEN_Base.pth")
|
51 |
-
|
52 |
-
image = Image.open("./image2.jpg")
|
53 |
-
mask, foreground = model.inference(image)
|
54 |
-
mask.save("./mask.png")
|
55 |
-
foreground.save("./foreground.png")
|
|
|
6 |
|
7 |
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
|
8 |
|
9 |
+
|
10 |
+
## Quick Start Code
|
11 |
+
```python
|
12 |
+
from BEN import BEN_Base
|
13 |
+
from PIL import Image
|
14 |
+
import torch
|
15 |
+
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
model = BEN_Base().to(device).eval()
|
18 |
+
model.loadcheckpoints("./BEN/BEN_Base.pth")
|
19 |
+
|
20 |
+
image = Image.open("./image2.jpg")
|
21 |
+
mask, foreground = model.inference(image)
|
22 |
+
mask.save("./mask.png")
|
23 |
+
foreground.save("./foreground.png")
|
24 |
+
|
25 |
+
|
26 |
# BEN SOA Benchmarks on Disk 5k Eval
|
27 |
|
28 |
### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
|
|
|
56 |
1. Clone Repo
|
57 |
2. Install requirements.txt
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|